论文创新点
题目:Inter-Class and Inter-Domain Semantic Augmentation for Domain Generalization
跨类与跨域语义增强用于域泛化
作者:Mengzhu Wang, Yuehua Liu, Jianlong Yuan, Shanshan Wang, Zhibin Wang, Wei Wang
论文创新点
- 跨类语义增强(CrossSmooth):作者提出了CrossSmooth模块,通过从跨类中采样语义方向,生成具有其他类形态特征的图像。该方法通过向高斯采样的协方差矩阵添加常数,扩展了类内语义到跨类语义,从而提高样本多样性。
- 跨域语义增强(CrossVariance):作者提出了CrossVariance模块,通过从跨域中采样语义方向,捕捉不同域的样式。该方法利用不同域的协方差,使得每个域展现出多个域的
订阅专栏 解锁全文

689

被折叠的 条评论
为什么被折叠?



