TPAMI 2024 | HyperSOR: 面向显著对象排序的上下文感知图超网络

HyperSOR: Context-Aware Graph Hypernetwork for Salient Object Ranking

HyperSOR: 面向显著对象排序的上下文感知图超网络

Minglang Qiao; Mai Xu; Lai Jiang; Peng Lei; Shijie Wen; Yunjin Chen; Leonid Sigal


摘要

显著对象排序 (SOR) 旨在对图像中的显著对象进行分割,并同时预测它们的显著性排序,这是根据人类注意力在不同对象间的转移来进行的。现有的 SOR 方法主要关注基于对象的注意力,例如对象的语义和外观。然而,我们发现场景上下文在 SOR 中起着至关重要的作用,同一对象的显著性排序在不同场景中会有很大差异。为此,本文首次尝试显式地学习 SOR 的场景上下文。具体来说,我们建立了一个包含 24,373 张图像的大规模 SOR 数据集,具有丰富的上下文注释,即场景图、分割和显著性排序。受对数据集分析的启发,我们提出了一种新颖的图超网络,名为 HyperSOR,用于上下文感知的 SOR。在 HyperSOR 中,首先开发了一个初始图模块,用于分割对象并通过考虑几何

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值