TPAMI 2024 | 基于事件相机的动作识别与基准测试

题目:Action Recognition and Benchmark Using Event Cameras

基于事件相机的动作识别与基准测试

作者:Yue Gao; Jiaxuan Lu; Siqi Li; Nan Ma; Shaoyi Du; Yipeng Li; Qionghai Dai


摘要

近年来,基于视频的动作识别取得了显著的成就。除了传统的基于帧的相机,事件相机是受生物启发的视觉传感器,它们只记录像素亮度变化而非亮度值。然而,在基于事件的动作识别方面所做的努力还很少,大规模的公共数据集也几乎不可用。在本文中,我们提出了一个名为 EV-ACT 的基于事件的动作识别框架。首次提出了可学习的多融合表示(LMFR),以可学习的方式整合多个事件信息。具有双重时间粒度的 LMFR 被送入基于事件的慢速-快速网络,用于融合外观和运动特征。引入了时空注意力机制,以进一步增强动作识别的学习能力。为了推动这一方向的研究,我们收集了最大的基于事件的动作识别基准测试集 THUE-ACT-50 以及在具有挑战性环境下收集的配套 THUE-ACT-50-CHL 数据集,总共超过 12,830 条记录,涵盖 50 个动作类别,是之前最

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值