TPAMI 2024 | 机器学习中的可扩展最优传输方法:一项当代综述

论文信息

题目:Scalable Optimal Transport Methods in Machine Learning: A Contemporary Survey
机器学习中的可扩展最优传输方法:一项当代综述
作者:Abdelwahed Khamis; Russell Tsuchida; Mohamed Tarek; Vivien Rolland; Lars Petersson
源码链接:https://github.com/abdelwahed/OT_for_big_data

论文创新点

  1. 全面的调查:提供了一个全面的调查,涵盖了最优传输的背景、不同的数学表述(formulations)、属性、以及在机器学习中的重要应用。

  2. 可扩展性问题</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值