论文信息
题目:Neural Prompt Search
神经提示搜索
作者:Yuanhan Zhang, Kaiyang Zhou, Ziwei Liu
源码链接:https://github.com/ZhangYuanhan-AI/NOAH
论文创新点
- 提出神经提示搜索(NOAH),通过神经架构搜索自动为每个下游数据集找到最佳提示模块设计。
- 将适配器、LoRA和VPT纳入搜索空间,实现模块间的协同优化,提升迁移学习性能。
- 展示了NOAH在少样本学习、领域泛化和多模态任务中的优越性,验证了其通用性和高效性。
摘要
近年来,视觉模型的规模呈指数级增长,尤其是在Vision Transformer出现之后。这促使了参数高效调优方法的发展,例如学习适配器层或视觉提示令牌,这些方法允许训练一小部分模型参数,而绝大多数参数来自预训练并保持冻结状态。然而,设计合适的调优方法并非易事&