TPAMI 2025 | 深入挖掘梯度在基于展开的加速磁共振成像重建中的应用

论文信息

题目:Digging Deeper in Gradient for Unrolling - based Accelerated MRI Reconstruction
深入挖掘梯度在基于展开的加速磁共振成像重建中的应用
作者:Faming Fang, Tingting Wang, Guixu Zhang, Fang Li

论文创新点

  1. 推导全新先验:论文深入研究图像梯度这一高频信息,通过理论分析,推导得到全采样磁共振图像的最大梯度幅值累积偏差(CDMG)先验,并将其作为显式先验,结合隐式深度先验,构建先验概率项。
  2. 拓展观测模型:与其他基于展开且在单图像级别构建模型的方法不同,该论文引入多阶梯度算子,将观测模型从单级拓展到多级,进一步提高似然项的建模精度。
  3. 提出新网络架构:将迭代优化算法通过深度展开神经网络实现,提出
### TPAMI 2025论文趋势与领域发展 #### 跨模态学习的趋势 随着跨模态技术的发展,TPAMI 2025 的研究可能更加关注语言和视觉之间的深层次交互。例如,在少样本类增量学习中,利用语言引导的关系迁移(Language-guided Relation Transfer, LRT),能够有效提升模型在新类别上的泛化能力[^3]。这种技术不仅依赖于传统的视觉特征提取,还引入了文本语义信息,使得模型能够在少量标注数据的情况下快速适应新的任务。 #### 增量学习中的知识迁移 在增量学习方面,TPAMI 2025 可能进一步探索如何通过知识迁移减少灾难性遗忘的影响。具体而言,基于图结构的知识表示模块 \(M_{\text{graph}}\) 已经展现出显著的优势,其增量准确率可达到 39.32%[^3]。未来的研究可能会更深入地探讨如何设计高效的图神经网络架构,以便更好地捕捉不同类别间的复杂关系,并将其应用于动态环境下的连续学习场景。 #### 领域自适应与风格化学习 对于领域自适应问题,TPAMI 2025 或将继续推进风格化学习的方法论创新。当前已有研究表明,通过模拟过去领域的输入分布,可以在一定程度上缓解领域级别的灾难性遗忘[^1]。此外,为了应对未见过的新领域,预测器需要具备更强的泛化能力,而这通常可以通过增加训练过程中遇到的数据多样性来实现。预计未来的算法将进一步优化这一过程,使模型不仅能处理已知领域的变化,还能高效扩展至未知领域。 #### 视觉原型的作用机制 关于视觉原型的应用,现有工作已经证明它们可以作为调整特征的重要上下文信息[^2]。在未来的工作中,研究人员或许会尝试构建更为灵活的视觉原型更新策略,允许在不破坏原有知识的前提下逐步融入新增加的信息。这种方法有望为解决长期存在的类别级灾难性遗忘提供一种全新的思路。 ```python import torch.nn as nn class VisualPrototypeModule(nn.Module): def __init__(self, num_classes, feature_dim): super().__init__() self.prototype = nn.Parameter(torch.randn(num_classes, feature_dim)) def forward(self, features): prototypes = self.prototype.unsqueeze(0).expand(features.size(0), -1, -1) return torch.cat([features, prototypes], dim=-1) ``` 此代码片段展示了一个简单的视觉原型模块的设计方式,它可以直接嵌入到现有的深度学习框架中用于增强特征表达。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值