AAAI 2024 | 基于新颖性指导的数据重用:高效且多样化的多智能体强化学习

论文信息

题目:Novelty-Guided Data Reuse for Efficient and Diversified Multi-Agent Reinforcement Learning
基于新颖性指导的数据重用:高效且多样化的多智能体强化学习
Yangkun Chen, Kai Yang, Jian Tao, Jiafei Lyu

论文创新点

  1. 新颖性指导的样本重用机制:论文提出了一种基于**随机网络蒸馏(RND)**的新颖性评估方法,用于动态调整多智能体强化学习(MARL)中的策略更新频率。
  2. 差异化更新策略:论文通过控制每个智能体的更新频率,实现了智能体之间的行为多样化。新颖性高的状态触发更频繁的更新,而常见状态则减少更新次数。
  3. 分离的评论网络结构:为了在保持参数共享的同时实现智能体的多样化,论文提出了一
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值