论文信息
题目:Novelty-Guided Data Reuse for Efficient and Diversified Multi-Agent Reinforcement Learning
基于新颖性指导的数据重用:高效且多样化的多智能体强化学习
Yangkun Chen, Kai Yang, Jian Tao, Jiafei Lyu
论文创新点
- 新颖性指导的样本重用机制:论文提出了一种基于**随机网络蒸馏(RND)**的新颖性评估方法,用于动态调整多智能体强化学习(MARL)中的策略更新频率。
- 差异化更新策略:论文通过控制每个智能体的更新频率,实现了智能体之间的行为多样化。新颖性高的状态触发更频繁的更新,而常见状态则减少更新次数。
- 分离的评论网络结构:为了在保持参数共享的同时实现智能体的多样化,论文提出了一