MIA 2024 | C-DARL: 基于对比扩散对抗表示学习的无标签血管分割

论文信息

题目:C-DARL: Contrastive Diffusion Adversarial Representation Learning for Label-Free Blood Vessel Segmentation
C-DARL: 基于对比扩散对抗表示学习的无标签血管分割
作者:Boah Kim, Yujin Oh, Bradford J. Wood, Ronald M. Summers, Jong Chul Ye

论文创新点

  1. 无标签血管分割方法:本文提出了一种无标签血管分割方法,能够在训练模型时利用多种血管图像,而不需要背景图像。

  2. 对比学习:与DARL相比,本文提出的模型在生成血管分割图时应用了对比学习,使网络能够深入学习血管表示。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值