论文信息
Learning Feature Matching via Matchable Keypoint-Assisted Graph Neural Network
基于可匹配关键点辅助的图神经网络学习特征匹配
作者:Zizhuo Li and Jiayi Ma
论文创新点
- 双边上下文感知采样(BCAS)模块:该模块动态采样两组分布均匀且具有高匹配度分数的关键点,作为消息传递的瓶颈。通过结合双边上下文信息,BCAS模块能够更准确地预测关键点的匹配度分数,从而引导紧凑且鲁棒的上下文聚合。
- 可匹配关键点辅助的上下文聚合(MKACA)模块:MKACA模块利用采样的可匹配关键点作为注意力瓶颈,限制每个关键点仅与图像内和图像间的可匹配关键点进行通信。
- 匹配度分数引导的注意力机制