TIP 2025 | 基于可匹配关键点辅助的图神经网络学习特征匹配

论文信息

Learning Feature Matching via Matchable Keypoint-Assisted Graph Neural Network
基于可匹配关键点辅助的图神经网络学习特征匹配
作者:Zizhuo Li and Jiayi Ma

论文创新点

  1. 双边上下文感知采样(BCAS)模块:该模块动态采样两组分布均匀且具有高匹配度分数的关键点,作为消息传递的瓶颈。通过结合双边上下文信息,BCAS模块能够更准确地预测关键点的匹配度分数,从而引导紧凑且鲁棒的上下文聚合
  2. 可匹配关键点辅助的上下文聚合(MKACA)模块:MKACA模块利用采样的可匹配关键点作为注意力瓶颈,限制每个关键点仅与图像内和图像间的可匹配关键点进行通信。
  3. 匹配度分数引导的注意力机制
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值