TII 2024 | 基于自适应质心对齐解耦学习的多目标领域故障诊断

论文信息

题目:Disentanglement Learning With Adaptive Centroid Alignment for Multiple Target Domains Fault Diagnosis
基于自适应质心对齐解耦学习的多目标领域故障诊断
Yu Gao, Xutao Zheng, Jinxing Li, Lijun Zong, Hongpeng Yin, Huafeng Li, Guangming Lu

论文创新点

  1. 提出新型MTDA方法:论文提出了一种基于解耦学习(DL)的新型多目标领域自适应(MTDA)方法DLACA,用于提取更纯净的与故障相关但与领域无关的特征,解决了现有方法在多目标领域故障诊断中难以有效对齐特征分布的问题。
  2. 设计一致性学习策略:设计了一种简单
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值