医图论文 IJCV‘24 | 学习跨子分区泛化以实现感知异质性的域自适应细胞核分割

论文信息

题目:Learning to Generalize over Subpartitions for Heterogeneity-Aware Domain Adaptive Nuclei Segmentation
学习跨子分区泛化以实现感知异质性的域自适应细胞核分割
作者:Jianan Fan、Dongnan Liu、Hang Chang、Weidong Cai

论文创新点

  1. 提出整体两阶段解耦框架:作者提出了一个整体的两阶段解耦框架,用于OCDA设置下的跨域细胞核实例分割。该框架在图像和实例级别分别捕捉域不变的特征表示,能够明确解决组织病理学图像的异质性问题。
  2. 改进全局图像级对齐策略:在全局图像级对齐中,作者采用了渐进式聚类和分离策略,将风格编码的学习与图像转换任务相结合,有利于风格特征解耦。
  3. 设计局部实例级对齐机制
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值