论文信息
题目:Learning to Generalize over Subpartitions for Heterogeneity-Aware Domain Adaptive Nuclei Segmentation
学习跨子分区泛化以实现感知异质性的域自适应细胞核分割
作者:Jianan Fan、Dongnan Liu、Hang Chang、Weidong Cai
论文创新点
- 提出整体两阶段解耦框架:作者提出了一个整体的两阶段解耦框架,用于OCDA设置下的跨域细胞核实例分割。该框架在图像和实例级别分别捕捉域不变的特征表示,能够明确解决组织病理学图像的异质性问题。
- 改进全局图像级对齐策略:在全局图像级对齐中,作者采用了渐进式聚类和分离策略,将风格编码的学习与图像转换任务相结合,有利于风格特征解耦。
- 设计局部实例级对齐机制