文章目录
以下是AI芯片中各种“墙”的含义及解决方式:
内存墙 (Memory Wall)
- 含义:指内存性能与处理器性能之间的不匹配,导致内存成为性能瓶颈的现象。随着AI模型的增大和复杂度提升,对内存需求增加,但内存速度未随处理器速度同步增长,使处理器常需等待内存数据传输,无法充分发挥计算能力.
- 解决方式:
- 提升内存带宽:采用高带宽内存(HBM)技术等,提高数据传输速率,如当前一些高性能DDR内存可实现约256GB/s的峰值性能.
- 增加数据传输宽度:利用中介层等技术,增加数千个连接,扩大数据传输宽度,改善内存性能.
- 高速缓存层次结构:使用高速缓存层次结构来减少主存访问次数。
- 探索新型架构:如近存计算架构,将计算单元靠近内存,减少数据传输距离和延迟,来突破内存墙限制。或者探索存算一体架构,在存储单元内部完成部分计算任务,以减少数据传输。如苹芯科技将再生门控存储器等新型存储介质和神经网络加速器等计算单元高度融合,数据和算法的存储与运算是并行进行的,降低了数据搬移开销,提升了算力密度.
- 优化存储介质和架构:研究新型存储介质,如阻变存储器(ReRAM)、相变存储器(PCM)等,提高存储性能和与计算单元的融合度;设计更高效的存储架构,如分布式存储架构,以提升数据访问效率 。
存储墙 (Storage Wall)
- 含义:存储墙与内存墙类似,但更侧重于长期存储系统(如硬盘、SSD)的速度和容量问题。它涉及到数据存储设备的读写速度、延迟以及存储密度等问题。
- 解决方式:
- 更快的非易失性存储器:采用更快的非易失性存储器,如NVMe SSDs, 3D XPoint, RRAM等。
- 存储分层策略:增加存储分层策略,将热数据放在快速访问的存储介质中,冷数据则存储在成本更低、速度较慢的介质中。
一般看来,内存墙和存储墙都是混用的,都是指芯片内部存储单元和计算单元物理上分离,致使数据在二者之间传输的带宽和时延成本极高,AI 算法处理大规模数据时,面临内存访问瓶颈、算力利用率低下等问题.
性能墙(Performance Wall)
- 含义: AI芯片在发展过程中,受到多种因素限制,导致其性能难以持续提升,无法满足日益增长的AI应用需求。 例如,随着芯片制程工艺逐渐接近物理极限,晶体管密度提升速度变慢,传统的依靠提升制程来提高性能的方式越来越难实现.
- 解决方式:
- 先进制程与Chiplet技术结合:采用更先进的芯片制程工艺,如3纳米等,同时结合Chiplet技术,将多个小芯片集成在一起,实现更大等效芯片面积,提升整体性能,英伟达的B200芯片就采用了Chiplet技术.
- 架构优化与创新:研发新的芯片架构,如类脑架构、存算一体架构等,提高芯片的并行计算能力和能效比;优化芯片的微架构,如改进缓存结构、增加执行单元等,提升芯片的单核性能.
- 软件与硬件协同优化:通过优化编译器、开发高效的并行编程框架等软件手段,充分发挥硬件的性能潜力,提高系统的整体性能.
功耗墙 (Power Wall)
- 含义:AI技术的广泛应用与巨大的能耗需求之间的矛盾,导致AI芯片的功耗过高,限制了其进一步发展和应用。AI算法复杂,计算量大,传统计算架构和散热系统效率低,无法满足能耗需求.
- 解决方式:
- 芯片工艺优化:采用更先进的制程工艺,降低芯片的静态功耗和动态功耗;优化芯片的电源管理,如采用动态电压频率调整(DVFS)技术,根据芯片的负载情况动态调整电压和频率,降低功耗.
- 架构级优化:设计低功耗的芯片架构,如采用稀疏神经网络架构、混合专家模型(MoE)等,减少不必要的计算,降低功耗;优化芯片的通信架构,减少数据传输过程中的能量消耗.
- 系统级优化:从系统层面进行优化,如采用高效的散热技术,降低芯片的工作温度,提高芯片的可靠性和能效比;优化数据中心的布局和管理,提高能源利用效率.
面积墙(Area Wall)
- 含义:随着AI芯片功能的增强和性能的提升,芯片的面积不断增大,但受到芯片制造工艺、成本、散热等因素的限制,芯片面积无法无限制地增加,从而形成了面积墙。例如,英伟达的B200芯片相比上一代H100体积增大了约一倍,但晶体管密度并未翻倍.
- 解决方式:
- 三维集成技术:采用三维集成技术,将多个芯片层堆叠在一起,实现更高的集成度,在不增加芯片平面面积的情况下,提高芯片的性能和功能。
- Chiplet异构集成:将不同功能的小芯片(Chiplet)集成在一起,实现芯片的异构集成,提高芯片的灵活性和可扩展性,同时减小芯片的整体面积.
- 优化芯片布局:通过优化芯片的布局和布线,提高芯片的空间利用率,减小芯片的面积。例如,采用更紧凑的电路设计、优化存储单元和计算单元的布局等。
通信墙 (Communication Wall)
- 含义:在大模型训练中,由于模型参数众多、计算量大,常采用分布式训练,而节点间频繁交换数据和参数时会受到通信开销的限制.
- 解决方式:
- 增加通信带宽:采用高速通信接口和网络技术,如Infiniband、NVLink、CXL等,提高节点间的通信带宽,加快数据传输速度.
- 降低通信延迟:优化通信协议和算法,减少数据传输过程中的延迟;采用全光交换网络等技术,构建零延迟的通信架构,提高通信效率.
- 优化通信架构:设计更高效的分布式训练架构,如采用参数服务器架构、AllReduce架构等,减少节点间的通信量和通信次数,提高训练效率.