【时间序列预测】基于PyTorch实现CNN_LSTM算法

  在时间序列预测任务中,CNN(卷积神经网络)和LSTM(长短期记忆网络)是两种非常有效的神经网络架构。CNN擅长从数据中提取局部特征,而LSTM能够捕捉长期的依赖关系。将这两种模型结合使用,能够更好地处理具有时序性和局部特征的复杂数据。本文将详细介绍如何使用Pytorch实现一个基于CNN和LSTM的混合模型(CNN_LSTM)

1. CNN_LSTM模型概述

  在时间序列预测任务中,传统的机器学习方法如ARIMA、SVR等虽然有一定效果,但它们对于复杂数据的建模能力有限。近年来,深度学习方法在时序数据分析中取得了显著的进展。

  • CNN: 卷积神经网络能够有效地从数据中提取局部的空间特征,特别是在处理具有局部依赖关系的时序数据时,CNN能够通过卷积操作捕捉局部时间窗口内的重要模式。
  • LSTM: 长短期记忆网络能够捕捉数据中的长期依赖关系,适用于需要记忆历史状态的时序任务。LSTM通过特殊的门控机制解决了传统RNN(递归神经网络)中梯度消失或梯度爆炸的问题,能够有效地处理长序列数据。

2. 网络结构

我们的目标是通过结合CNN和LSTM来创建一个混合网络架构,具体步骤如下:

  • CNN层:首先,我们通过卷积层提取输入时间序列的局部特征。卷积层能够帮助模型捕捉局部时间序列模式。
  • LSTM层:然后,将CNN提取到的特征输入到LSTM网络中。LSTM能够通过其记忆能力学习时间序列中的长期依赖关系。
  • 输出层:最后,LSTM的输出会通过一个全连接层得到最终的预测结果。

3. 完整代码实现

"""
CNN_LSTM Network
"""
from torch import nn

class CNN_LSTM(nn.Module):
    """CNN_LSTM
    Args:
        cnn_in_channels : CNN输入通道数, if in.shape=[64,7,18] value=7
        bilstm_input_size : lstm输入大小, if in.shape=[64,7,18] value=18
        output_size :  期望网络输出大小
        cnn_out_channels:  CNN层输出通道数
        cnn_kernal_size :  CNN层卷积核大小
        maxpool_kernal_size:  MaxPool Layer kernal_size
        lstm_hidden_size: LSTM Layer hidden_dim
        lstm_num_layers: LSTM Layer num_layers
        dropout:  dropout防止过拟合, 取值(0,1)
        lstm_proj_size: LSTM Layer proj_size
    
    Example:
        >>> import torch
        >>> input = torch.randn([64,7,18])
        >>> model = CNN_LSTM(7, 18,18)
        >>> out = model(input)
    """
    def __init__(self,
            cnn_in_channels,
            lstm_input_size,
            output_size,
            cnn_out_channels=32,
            cnn_kernal_size=3,
            maxpool_kernal_size=3,
            lstm_hidden_size=128,
            lstm_num_layers=4,
            dropout = 0.05,
            lstm_proj_size=0
        ):
        super().__init__()
        
        # CNN Layer
        self.conv1d = nn.Conv1d(in_channels=cnn_in_channels, out_channels=cnn_out_channels, kernel_size=cnn_kernal_size, padding="same")
        self.relu = nn.ReLU()
        self.maxpool = nn.MaxPool1d(kernel_size= maxpool_kernal_size)
        
        # LSTM Layer
        self.lstm = nn.LSTM(
            input_size = int(lstm_input_size/maxpool_kernal_size),
            hidden_size = lstm_hidden_size,
            num_layers = lstm_num_layers,
            batch_first = True,
            dropout = dropout,
            proj_size = lstm_proj_size
        )
        
        # output Layer
        self.fc = nn.Linear(lstm_hidden_size,output_size)
    
    def forward(self, x):
        x = self.conv1d(x)
        x = self.relu(x)
        x = self.maxpool(x)
        lstm_out,_ = self.lstm(x)
        x = self.fc(lstm_out[:, -1, :])
        return x

4.模型解析

4.1 CNN层

self.conv1d = nn.Conv1d(in_channels=cnn_in_channels, out_channels=cnn_out_channels, kernel_size=cnn_kernal_size, padding="same")
  • in_channels: Conv1d 输入通道数
  • out_channels: Conv1d 输出通道数
  • kernel_size: 卷积核大小
  • padding: "same"表示卷积后输出大小与卷积操作前大小一致

4.2 ReLU层

self.relu = nn.ReLU()
  • ReLU(Rectified Linear Unit) 是常用的激活函数,能够增加网络的非线性,帮助模型学习复杂的模式。

4.3 MaxPooling层

self.maxpool = nn.MaxPool1d(kernel_size= maxpool_kernal_size)
  • MaxPooling 用于减少数据的维度,同时保持重要特征。通过在局部区域内选择最大值,它能够突出最重要的特征。

4.4 LSTM层

self.lstm = nn.LSTM(
            input_size = int(lstm_input_size/maxpool_kernal_size),
            hidden_size = lstm_hidden_size,
            num_layers = lstm_num_layers,
            batch_first = True,
            dropout = dropout,
            proj_size = lstm_proj_size)
  • input_size: LSTM层输入的特征数量
  • hidden_size :LSTM隐藏层维度
  • num_layers :LSTM叠加层数
  • batch_first:True 表示输入数据格式为[batch_size, seq_len, features_dim]
  • dropout : 防止过拟合

4.5 输出层

self.fc = nn.Linear(lstm_hidden_size, output_size)
  • 全连接层(Linear) 用于将LSTM的最后一层输出映射到最终的预测结果。lstm_hidden_size 是LSTM输出的特征数量,output_size 是模型的最终输出尺寸(例如,预测值的维度)

4.6 前向传播

def forward(self, x):
     x = self.conv1d(x)
     x = self.relu(x)
     x = self.maxpool(x)
     lstm_out,_ = self.lstm(x)
     x = self.fc(lstm_out[:, -1, :])
     return x
  • 首先经过卷积层进行特征提取
  • 然后将数据输入LSTM层
  • 最后,从LSTM的输出中选择最后一个时间步的输出(lstm_out[:, -1, :]),并通过全连接层进行预测。

5. 总结

  本文展示了如何利用Pytorch实现一个结合CNN和LSTM的网络架构,用于时间序列预测任务。CNN层负责提取局部特征,LSTM层则捕捉长时间依赖关系。通过这样的混合网络结构,模型能够在处理时间序列数据时更好地捕捉数据的复杂模式,提升预测精度。

希望这篇文章对你理解CNN-LSTM模型在时间序列预测中的应用有所帮助。如果有任何问题,欢迎留言讨论。

### PyTorch实现 CNN-LSTM-Attention 模型 在时间序列预测领域,CNN 提取局部特征的能力与 LSTM 处理长期依赖关系的优势相结合,形成了强大的混合模型。为了进一步提升性能,引入注意力机制(Attention),可以动态分配权重给不同时间段的数据[^1]。 以下是基于 PyTorch 构建的 CNN-LSTM-Attention 混合模型的一个简单示例: #### 数据预处理 在构建模型之前,通常需要对输入的时间序列数据进行标准化和分段操作。具体方法可参考相关资料中的数据处理部分[^2]。 ```python import torch import torch.nn as nn import torch.optim as optim class CNNLSTMAttentionModel(nn.Module): def __init__(self, input_size, hidden_size, num_layers, output_size, kernel_size=3, attention_dim=50): super(CNNLSTMAttentionModel, self).__init__() # 定义卷积层用于提取局部特征 self.cnn = nn.Sequential( nn.Conv1d(in_channels=input_size, out_channels=hidden_size, kernel_size=kernel_size), nn.ReLU(), nn.MaxPool1d(kernel_size=2) ) # 定义 LSTM 层用于捕捉时间依赖性 self.lstm = nn.LSTM(input_size=hidden_size, hidden_size=hidden_size, num_layers=num_layers, batch_first=True) # 定义注意力机制模块 self.attention_layer = nn.Linear(hidden_size, attention_dim) self.context_vector = nn.Linear(attention_dim, 1, bias=False) # 输出层 self.fc = nn.Linear(hidden_size, output_size) def forward(self, x): # 卷积层前向传播 cnn_out = self.cnn(x.permute(0, 2, 1)) # 调整维度以适应 Conv1d 输入 # 将卷积输出调整回 LSTM 所需形状 lstm_in = cnn_out.permute(0, 2, 1) # LSTM 前向传播 lstm_out, _ = self.lstm(lstm_in) # 计算注意力分数 attention_scores = torch.tanh(self.attention_layer(lstm_out)) attention_weights = torch.softmax(self.context_vector(attention_scores), dim=1) # 加权求和得到上下文向量 context_vector = torch.sum(attention_weights * lstm_out, dim=1) # 输出层计算最终结果 output = self.fc(context_vector) return output ``` 上述代码定义了一个完整的 CNN-LSTM-Attention 结构。其中: - **CNN 部分**负责提取输入信号的局部模式。 - **LSTM 部分**捕获长时间范围内的依赖关系。 - **Attention 部分**通过加权方式突出重要时刻的信息[^3]。 #### 模型训练流程 以下是一个基本的训练框架: ```python def train_model(model, data_loader, criterion, optimizer, epochs): model.train() for epoch in range(epochs): total_loss = 0.0 for inputs, targets in data_loader: optimizer.zero_grad() outputs = model(inputs.float()) loss = criterion(outputs.squeeze(), targets.float()) loss.backward() optimizer.step() total_loss += loss.item() avg_loss = total_loss / len(data_loader) print(f'Epoch [{epoch+1}/{epochs}], Loss: {avg_loss:.4f}') ``` 调用此函数时需要注意设置合适的超参数并准备好数据加载器 `data_loader`。 --- ### 注意事项 如果发现模型训练过程中损失下降缓慢或者不收敛,可能的原因包括但不限于学习率过高、梯度消失/爆炸等问题。此时可以通过调整优化算法的学习速率或增加正则化项等方式改善情况。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值