【风力发电功率预测】单值预测评价指标

1. 概述

1.1 什么是单值预测

风电功率单值预测(Single-value Prediction of Wind Power)是指基于一组输入数据(如风速、风向、气温、气压等)预测未来某个时刻的风电机组或风电场的功率输出的数值。在实际应用中,风电功率单值预测通常是指对未来某个时刻(如1小时后、一天后等)风电场的发电功率进行精确预测,目标是通过模型尽可能准确地给出一个具体的功率数值,而不是预测其范围或概率分布。

1.2 什么是概率预测

风电功率概率预测,顾名思义,指的是预测未来风电功率的“概率分布”,也就是给出一个功率值的预测区间或是一个功率值范围的概率。这种方法不同于传统的单值预测,它不仅仅给出一个特定的预测值(如:未来1小时的风电功率为50 MW),而是给出该功率值可能出现的概率。通过这种方式,我们能够了解在某个时刻风电功率取某个范围值的可能性。

为什么要做风电功率的概率预测?

  • 应对不确定性:风电功率受气象条件影响,很难精确预测。通过概率预测,可以给出多个可能的预测结果,这样就能够更好地应对功率波动和不确定性。
  • 帮助决策:如果我们知道未来功率值的概率分布,就可以更好地安排电网调度和备用电源。例如,如果风电功率可能在某个区间内波动,电网可以做出相应的预案,避免电网过载或电力不足。
  • 风险管理:通过预测功率的波动范围和每个区间的概率,可以帮助风电场和电网运营商更好地评估和管理风险。

举个例子来说明:

假设我们正在预测未来1小时的风电功率,得到的概率预测结果如下:

  • 风电功率小于30 MW的概率为5%
  • 风电功率在30-40 MW之间的概率为15%
  • 风电功率在40-50 MW之间的概率为50%
  • 风电功率在50-60 MW之间的概率为20%
  • 风电功率大于60 MW的概率为10%

这意味着,未来1小时内,最可能的功率值在40到50 MW之间,而功率值大于60 MW或者小于30 MW的概率较低

1.2 单值预测常用评价指标

根据国内外相关标准,常用的单值功率预测结果评价指标包括均方根误差与归一化均方根误差(NRMSE)、平均绝对误差与归一化平均绝对误差(NMAE)、相关性系数( ρ \rho ρ)、最大预测误差(ME)、准确率(ACC)、合格率( Q R Q_R QR)、极大误差率等。

2. 单值预测常用评价指标详解

2.1 均方误差(MSE)

均方误差(MSE)是预测误差的平方的平均值,它反映了预测值与真实值之间的差距。公式如下:
M S E = 1 n ∑ i = 1 n ( y − y ^ i ) 2 MSE=\frac {1}{n} \sum_{i=1}^n (y-\hat{y}_i)^2 MSE=n1i=1n(yy^i)2

  • y i y_i yi 为真实值
  • y ^ i \hat y_i y^i 为预测值
  • n n n 为样本数量

2.2 均方根误差(RMSE)

均方根误差(RMSE)是均方误差的平方根,能够直观地衡量预测误差的大小,单位与数据一致。公式如下:
R M S E = 1 n ∑ i = 1 n ( y − y ^ i ) 2 RMSE= \sqrt {\frac {1}{n} \sum_{i=1}^n (y-\hat{y}_i)^2} RMSE=n1i=1n(yy^i)2

  • y i y_i yi 为真实值
  • y ^ i \hat y_i y^i 为预测值
  • n n n 为样本数量

2.3 归一化均方根误差 (NRMSE)

归一化均方根误差(NRMSE)是将均方根误差标准化,使其结果与数据范围无关。公式如下:
N R M S E = 1 n ∑ i = 1 n ( P M , i − P P , i C i ) 2 NRMSE=\frac {1}{n} \sqrt {\sum_{i=1}^n(\frac {P_{M,i} -P_{P,i} }{C_i})^2} NRMSE=n1i=1n(CiPM,iPP,i)2

  • P M , i P_{M,i} PM,i i i i 时刻实际功率
  • P P , i P_{P,i} PP,i i i i 时刻预测功率
  • C i C_i Ci i i i 时刻开机容量
  • n n n 为参与误差评价的样本个数

2.4 平均绝对误差(MAE)

平均绝对误差(MAE)是所有预测误差绝对值的平均值,能够直观反映预测偏差的大小。公式如下:
M A E = 1 n ∑ i = 1 n ∣ y i − y ^ i ∣ MAE=\frac {1}{n} \sum_{i=1}^n|y_i -\hat y_i| MAE=n1i=1nyiy^i

  • y i y_i yi 为真实值
  • y ^ i \hat y_i y^i 为预测值
  • n n n 为样本数量

2.5 归一化平均绝对误差 (NMAE)

归一化平均绝对误差(NMAE)是将平均绝对误差标准化,公式如下:

N M A E = 1 n ∑ i = 1 n ∣ P M , i − P P , i C i ∣ NMAE=\frac {1}{n} \sum_{i=1}^n|\frac {P_{M,i}-P_{P,i}}{C_i}| NMAE=n1i=1nCiPM,iPP,i

  • P M , i P_{M,i} PM,i i i i 时刻实际功率
  • P P , i P_{P,i} PP,i i i i 时刻预测功率
  • C i C_i Ci i i i 时刻开机容量
  • n n n 为参与误差评价的样本个数

2.6 平均绝对百分比误差 (MAPE)

平均绝对百分比误差(MAPE)是对预测误差相对于实际值的百分比误差进行平均的结果。公式如下:

M A P E = 1 n ∑ i = 1 n ∣ y i − y ^ i y i ∣ × 100 MAPE= \frac {1}{n} \sum_{i=1}^n| \frac {y_i- \hat y_i} {y_i} | \times 100 MAPE=n1i=1nyiyiy^i×100

  • y i y_i yi 为真实值
  • y ^ i \hat y_i y^i 为预测值
  • n n n 为样本数量

2.7 决定系数 ( R 2 R^2 R2

决定系数( R 2 R^2 R2)用于衡量模型拟合优度,值越接近1,模型拟合效果越好。公式如下:

R 2 = 1 − ∑ i = 1 n ( y i − y ^ i ) 2 ∑ i = 1 n ( y i − y ˉ i ) 2 R^2 = 1- \frac{\sum_{i=1}^n(y_i -\hat y_i)^2} {\sum_{i=1}^n(y_i -\bar y_i)^2} R2=1i=1n(yiyˉi)2i=1n(yiy^i)2

  • y i y_i yi 为真实值
  • y ^ i \hat y_i y^i 为预测值
  • n n n 为样本数量

2.8 相关性系数 ( ρ \rho ρ

相关性系数( ρ \rho ρ)衡量了预测值与真实值之间的线性相关性,值范围为[-1, 1],越接近1表示强正相关。公式如下
ρ = ∑ i = 1 n ( P M , i − P ˉ M ) ( P P , i − P ˉ P ) ∑ i = 1 n ( P M , i − P ˉ M ) 2 ∑ i = 1 n ( P P , i − P ˉ P ) 2 \rho = \frac { \sum_{i=1}^n (P_{M,i} - \bar P_M)(P_{P,i} - \bar P_P)} {\sqrt {\sum_{i=1}^n (P_{M,i} - \bar P_M)^2 } \sqrt {\sum_{i=1}^n (P_{P,i} - \bar P_P)^2} } ρ=i=1n(PM,iPˉM)2 i=1n(PP,iPˉP)2 i=1n(PM,iPˉM)(PP,iPˉP)

  • P M , i P_{M,i} PM,i i i i 时刻实际功率
  • P P , i P_{P,i} PP,i i i i 时刻预测功率
  • n n n 为参与误差评价的样本个数
  • P ˉ M \bar P_M PˉM 实际功率平均值
  • P ˉ P \bar P_P PˉP 预测功率的平均值

2.9 最大预测误差(ME)

最大预测误差(ME)表示所有预测误差中的最大值,能够反映模型在最差情况下的预测能力。公式如下:
M E = max ⁡ { ∣ P M , i − P P , i ∣ } i = 1 n ME = \max \{ |P_{M,i} -P_{P,i}|\}_{i=1}^n ME=max{PM,iPP,i}i=1n

  • P M , i P_{M,i} PM,i i i i 时刻实际功率
  • P P , i P_{P,i} PP,i i i i 时刻预测功率
  • n n n 为参与误差评价的样本个数

2.10 准确率 (ACC)

准确率(ACC)是衡量模型预测是否准确的指标,通常使用归一化均方根误差(NRMSE)来计算。公式如下:
A C C = ( 1 − N R M S E ) × 100 % ACC = (1-NRMSE) \times 100 \% ACC=(1NRMSE)×100%

2.11 合格率( Q R Q_R QR

合格率 Q R Q_R QR 表示预测误差满足一定容许误差范围的比例。公式如下
Q R = 1 n ∑ i = 1 n B i × 100 % B i = { 1 , ∣ P P i − P M i ∣ C i < T 0 , ∣ P P i − P M i ∣ C i ≥ T Q_R = \frac{1}{n} \sum_{i=1}^n B_i \times 100 \% \\ B_i= \left\{ \begin{array}{l} 1, \frac {|P_{Pi}-P_{Mi}|} {C_i} < T\\ 0, \frac {|P_{Pi}-P_{Mi}|} {C_i} \geq T\\ \end{array} \right. QR=n1i=1nBi×100%Bi={1,CiPPiPMi<T0,CiPPiPMiT

  • Q R Q_R QR 为合格率
  • B i B_i Bi 表示 i i i 时刻预测绝对误差是否合格的值,合格为 1 ,不合格为 0
  • T T T 为合格与否的判定阈值,通常依据各电网的实际情况而定,一般不大于 0.25
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值