从零开始配深度学习服务器2023.04.01

本文提供了一步一步的指南,详细讲解如何从制作Ubuntu启动U盘开始,安装Ubuntu操作系统,特别是针对有两块硬盘的情况进行了分区指导。接着,文章介绍了如何初始化系统设置,禁用内核更新,并安装Nvidia驱动和CUDA、Cudnn,这些都是搭建深度学习环境的关键步骤。最后,文章提到了安装过程中的注意事项和可能出现的问题及其解决方法。
摘要由CSDN通过智能技术生成

这是一篇比较详细的新从零开始配深度学习服务器教程,大家可以根据小标题直接跳转到需要参考的部分。

1.制作可启动 Ubuntu U盘

首先,在此处下载Ubuntu映像文件。对于本教程,我们使用的是Ubuntu 22.04 LTS版本。

需要将下载的 ISO 写入 U 盘以创建安装介质,这里推荐使用Rufus,Ubuntu官网上推荐的balenaEtcher烧录时会报错。

  • 插入U盘
  • 启动 Rufus

  •  “设备”处选择您插入的U盘
  • 点击“选择”插入ubuntu-22.04.2-desktop-amd64映像文件
  • 点击“开始”,开始烧录
  • 若有警告弹窗,阅读一下,没有问题点击确定
  • 烧录完成,点击”关闭

bootable U盘安装介质制作完成。

2.安装Ubuntu

将 U 盘插入要用于安装 Ubuntu 的笔记本电脑或 PC,然后启动或重启设备。它应该会自动识别安装媒体,选择”Install Ubuntu"(一般是第一行)。这里用的是有两块硬盘,512G SSD,1T机械硬盘的 PC。如果没有自动识别,尝试在启动期间按住F1/ F2/F12进入BIOS,修改开机启动顺序。

然后应该就能看见欢迎页面。(下图皆以官网英文界面举例)

 可以下拉到最后选择“中文”,点击"Install Ubuntu"

选择键盘布局,应该是下拉到最后选择中文,右边选择“Chinese Hanyupinyin”类似(方便以后在Ubuntu中可以中文输入),点击“继续

 一般选择“正常化安装”,点击“继续

 如果有两块硬盘想自己分区的话,选择"Something else",否则选"Erase disk and install Ubuntu",一般不会选择新旧Ubuntu系统共存的那个选项。这里以选"Something else"为例,点击“Install Now”。

 看到的界面类似上图(图片来源教程,您可以参考着看这份教程,比较详细),建议先点击“还原”找到自己的两个硬盘,选中"/dev/sda1"等非空闲分区,点击“”,清空所有内容,这样磁盘就都变成空闲了。其中名为nvme0n1的磁盘是固态硬盘,大小为512G,名为sda的磁盘为机械硬盘,大小为1T。

删除完所有分区后点击"+",新建以下四个分区:(注意“主分区”还是“逻辑分区”不要选错了,下图只是找的示例,错勾成了“Primary")

 

 

 

硬盘大小类型位置分区(Use as)挂载点
SSD500M主分区空间起始位置efi系统分区
SSD与电脑内存一样大(比如我这里32G=32768M)逻辑分区空间起始位置swap分区交换空间
SSDSSD剩余所有空间主分区空间起始位置Ext4分区/
机械硬盘机械硬盘所有空间主分区空间起始位置Ext4分区/home

其中efi系统分区是启动引导相关的,swap分区是交换分区,一般设置为与电脑内存一样大就行,/是系统根目录,将SSD的剩余所有空间都给它,/home用于存放用户数据等,整个机械硬盘都分给它。整个安装完成后可以打开Terminal,输入 df -hl 查看。

创建完四个分区后,点击“Install Now

接下来选择时区,点击地图上的中国处,Shanghai

 

创建用户帐户,然后点击”继续

完成并重启,移除安装介质并单击“Enter"键。系统重新启动时,会出现登录屏幕。单击用户名并输入安装过程中设置的密码,就安装成功了。

 3.安装完Ubuntu后的初始化配置

打开终端(快捷键”Ctrl" +"Alt"+"T"新建窗口,”Ctrl" +"Shift"+"T"新建标签页)

在安装好系统后,如果直接打开一个终端执行su的话,会得到报错su: 认证失败。因为root用户默认是锁定状态,不允许登录,因此需要进行配置。终端执行:

sudo passwd root

会先要求你输入用户密码,然后会要你输入新的密码以及确认,这里新的密码就是root的密码,可以设置的和用户密码不一样,也可以一样。设置后,再次执行:

su

输入刚刚设置的root密码后,就可以进入root了。按”Ctrl" +"D"可退出root。

更新系统软件

sudo apt update
sudo apt update

禁止内核更新,不然后边很容易出现驱动版本错误等各种问题,导致系统崩溃。执行:

dpkg --get-selections |grep linux

可以查看电脑已安装的内核版本,比如输出如下:

 

然后再执行:

uname -a

可以查看当前正在使用的内核版本。比如:

表明我在用的是5.11.0-41-generic这个版本(注意不是5.8.0-43-generic)。一般只禁止和上述输出版本一致的image和headers即可,如果想保守起见,也可以将所有与该版本一致的内容都禁止掉。比如我这里禁止的有:(注意版本号检查与uname -a输出一致)

sudo apt-mark hold linux-image-5.11.0-41-generic
sudo apt-mark hold linux-headers-5.11.0-41-generic
sudo apt-mark hold linux-modules-5.11.0-41-generic
sudo apt-mark hold linux-modules-extra-5.11.0-41-generic

4. 安装Nvidia驱动,Cuda,Cudnn

安装Cuda,Cudnn往往需要先安装Nvidia驱动,所以这里把它们放在一个标题下。

进行这一步之前一定要进入BIOS把secure boot关掉,

否则安装新驱动后,会报错:

NVIDIA-SMI has failed because it couldn't communicate with the NVIDIA driver. Make sure that the latest NVIDIA driver is installed and running.

如果报了这个错还重启Ubuntu,会导致无法启动系统,左上角光标一闪一闪,黑屏。

挽救办法:

  • 进入BIOS把secure boot关掉,重新启动,看是否恢复正常
  • 仍然黑屏就要,开机进入 tty命令行界面,重装显卡驱动,教程

实在不行,返回第二步重装系统吧,下次记得先进入BIOS把secure boot关掉

要安装nvidia驱动,首先删除旧驱动:

sudo apt-get purge nvidia*

禁止自带的nouveau nvidia驱动:

sudo gedit /etc/modprobe.d/blacklist-nouveau.conf

在打开的空白文件内,填入如下两行内容,然后保存关闭。(打开时有问题不要紧,把这两句话填进去就行,如果不放心可以用su -进入root,然后用nano命令编辑)

blacklist nouveau
options nouveau modeset=0

更新配置文件:

sudo update-initramfs -u

!!!!!然后不要重启系统,

直接装新的驱动

添加Graphic Drivers PPA:

sudo add-apt-repository ppa:graphics-drivers/ppa

如果一直加载不出来, 用-E绕过代理(教程):sudo -E add-apt-repository  ppa:graphics-drivers/ppa

更新:

sudo apt-get update

查看合适的驱动版本:

ubuntu-drivers devices

输出如下:

可以根据推荐版本进行安装,但我还是建议安装nvidia-driver-470,因为装这个的时候成功了,装其他的时候没成功。

sudo apt-get install nvidia-driver-470

安装完成后,重启系统:

sudo reboot

执行命令sudo nvidia-smi,可以判断是否成功安装驱动:

安装CUDA

首先从官网下载自己需要的cuda版本,下载链接。可以选择cuda11.7(下面涉及到版本号的记得替换成自己的版本),配置选项如下所示:

 选好之后,会自动给出安装的命令,如下图所示:

 依次执行官网给出的两行命令,在下载run文件的过程中,可以先安装一下依赖库(不安装的话安装cuda的过程会报错),执行如下命令:

sudo apt-get install freeglut3-dev build-essential libx11-dev libxmu-dev libxi-dev libgl1-mesa-glx libglu1-mesa libglu1-mesa-dev

下面是安装时的选项:

Existing package manager installation of the driver found. It is strongly    │
│ recommended that you remove this before continuing.
# 选continue

Do you accept the above EULA? (accept/decline/quit):
#accept

!!!!!接下来会选择是否安装驱动等,这一步比较重要。驱动的话我们在前面已经安装好了,这里需要把它的选项给去掉(像法语一样,”X"意味着选中)。界面操作的方式在底部有说明,设置好的选项如下图所示,然后选择install。

配置环境

sudo gedit ~/.bashrc

最后面加入

export PATH=/usr/local/cuda/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

保存关闭,然后在终端执行:

source ~/.bashrc

使修改立即生效。接下来,给cuda创建软链接:

sudo ln -s /usr/local/cuda-11.7 /usr/local/cuda

检查 CUDA是否顺利安装:

nvcc -V

如果有出现类似下图,表示CUDA Toolkit已经安装成功

安装cudnn

安装好cuda后,需要下载cudnn对相应文件进行替换。cudnn的下载链接。如下图所示:

下载cudnn需要登陆nvidia的账号,没有的话就用邮箱去注册一个,免费。

下载 cuDNN Library for Linux [x86_64]

下载完成后,打开一个终端,依次执行如下命令:

tar -xvf cudnn-linux-x86_64-8.8.1.3_cuda11-archive.tar.xz
cd cudnn-linux-x86_64-8.8.1.3_cuda11-archive
sudo cp include/* /usr/local/cuda-11.7/include
sudo cp lib/libcudnn* /usr/local/cuda-11.7/lib64
sudo chmod a+r /usr/local/cuda-11.7/include/cudnn*
sudo chmod a+r /usr/local/cuda-11.7/lib64/libcudnn*

配置好后即可。下面测试cudnn

虽然前面我们默认选择安装了cuda的示例,但是仍然找不到/usr/local/cuda-11.7/samples文件夹,自己去github上搜索cudnn samples v8测试,link

cd
git clone https://github.com/li-weihua/cudnn_samples_v8 
cd cudnn_samples_v8/mnistCUDNN
make clean && make

如果遇到 fatal error: FreeImage.h: No such file or directory

sudo apt install libfreeimage3 libfreeimage-dev

再编译一下

make clean && make
./mnistCUDNN

如果没有问题则会返回如下:

Executing: mnistCUDNN
cudnnGetVersion() : 8500 , CUDNN_VERSION from cudnn.h : 8500 (8.5.0)
Host compiler version : GCC 11.2.0
.........
.........
.........
Test passed!

5.结语

如果您比较顺利的话,到这里就已经完成“配深度学习服务器”中最难的部分了。接下来您可以继续安装Anaconda,创建虚拟环境,在虚拟环境中安装Pytorch训练深度学习模型。希望能帮助到大家

参考链接

从零开始配一个深度学习服务器:固态+机械双硬盘ubuntu系统的安装、分区、配置超详细教程

安裝 Nvidia driver 530 CUDA 12.1 cudnn 12.x on Ubuntu 22.04 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值