提示词(prompt)工程指南(三):高级提示

这篇博客探讨了提示(prompt)工程的高级概念,包括零样本和少样本提示的原理与限制,链式思考提示、自一致性、生成知识提示以及自动提示工程师(APE)。通过示例展示了如何利用这些技术改善模型的性能,尤其是在处理复杂任务和推理问题时。文章还提到了一些最新研究,如零样本CoT和自一致性技术,以及如何通过自动提示工程来优化提示的生成和选择。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

到此为止,已经很明显完善提示有助于在不同任务上获得更好的结果。这就是提示工程的整体理念。

尽管那些例子很有趣,但在我们进入更高级的概念之前,让我们正式介绍一些概念。

完整的中文版本指南和更丰富的参考资料在 Github 和 Gitee 中,自动持续翻译更新:
🐙 关于提示词工程(prompt)的指南、论文、讲座、笔记本和资源大全

主题:


零样本提示

今天训练有大量数据和调整能够遵循指示的LLMs可以执行零样本任务。我们在前面的部分尝试了一些零样本示例。这是我们使用的示例之一:

提示:

将文本分类为中性,负面或积极。

文本:我认为假期还好。
情感:

输出:

中性

请注意,在上面的提示中,我们没有为模型提供任何示例-这就是零样本能力的工作方式。当零样本无法让模型正常工作时,建议在提示中提供演示或示例。接下来,我们将讨论称为少样本提示的方法。

少样本提示

虽然大型语言模型已经展示了出色的零样本能力,但在使用零样本设置时,在更复杂的任务上仍然存在不足。为了改善这种情况,使用少样本提示作为一种技术来启用上下文学习,在提示中提供演示以引导模型实现更好的性能。演示作为随后生成响应的示例的调节条件。

让我们通过Brown et al. 2020提出的示例演示少量提示。在这个示例中,任务是在句子中正确使用一个新单词。

提示:

格式:仅返回翻译内容,不包括原始文本。一个“乌哈普”是一种生长在坦桑尼亚的小型毛茸茸的动物。使用该词的句子示例是:
我们在非洲旅行时看见了这些非常可爱的乌哈普。

“扑啦弗”是指快速地跳上跳下。使用该词的句子示例是:

Output:

当我们赢得游戏时,我们所有人都开始欢呼跳跃。

我们可以观察到该模型通过提供一个示例即可执行任务。对于更困难的任务,我们可以尝试增加示范次数(例如,3次示范、5次示范、10次示范等)。

根据Min et al. (2022)的研究结果,这里有一些关于执行小样本任务的示范/样例的建议:

  • “标签空间和演示文本指定的输入分布都很重要(无论标签是否适用于单个输入)”
  • 即使您只是使用随机标签,所使用的格式也对性能起重要作用,这比根本不使用标签要好得多。
  • 额外的结果表明,从真实标签分布而不是统一分布中选择随机标签也有帮
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值