PyTorch学习-小土堆教程

5、pytorch加载数据初认识

Dataset:从数据集中获取每一个数据并赋予标签lable,统计一共有多少个数据

Dataloader:用于数据打包,为网络提供不同的数据形式

6、Dataset类代码实战

定义类Mydata,定义类的全局变量、获取图像和标签、获得数据集数量

数据集中一般常用的标记方式是:一个文件夹放图片,另一个文件夹放lable(用文本文档保存标签名称)

7、TensorBoard的使用(一)

TensorBoard 是一个基于浏览器的数据可视化工具,可以监视你模型的训练全过程,不需要联网就能打开这个观察器,这只是个本地服务使用前需要安装 pip install tensorboard。

add_scalar():将标量添加到 summary
参数:
tag (string):数据标识符,声明一个标识符就会记录运行的数据!
scalar_value (float or string/blobname):要保存的数值,相当于y轴
global_step (int):全局步值,相当于x轴
walltime (float):可选参数,用于记录发生的时间,默认为 time.time()

指定端口

tensorboard --logdir=logs 打开默认的端口
tensorboard --logdir=logs --port=指定的端口数字

7、TensorBoard的使用(二)

add_image()

opencv读取的是numpy类型数据

8、Transforms的使用(一)

如何使用transforms

数据类型tensor

9、Transforms的使用(二)

网络搭建torch.nn.Module

卷积操作 

torch.nn.functional.conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1)

神经网络-卷积层

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值