5、pytorch加载数据初认识
Dataset:从数据集中获取每一个数据并赋予标签lable,统计一共有多少个数据
Dataloader:用于数据打包,为网络提供不同的数据形式
6、Dataset类代码实战
定义类Mydata,定义类的全局变量、获取图像和标签、获得数据集数量

数据集中一般常用的标记方式是:一个文件夹放图片,另一个文件夹放lable(用文本文档保存标签名称)
7、TensorBoard的使用(一)
TensorBoard 是一个基于浏览器的数据可视化工具,可以监视你模型的训练全过程,不需要联网就能打开这个观察器,这只是个本地服务。使用前需要安装 pip install tensorboard。
add_scalar():将标量添加到 summary
参数:
tag (string):数据标识符,声明一个标识符就会记录运行的数据!
scalar_value (float or string/blobname):要保存的数值,相当于y轴
global_step (int):全局步值,相当于x轴
walltime (float):可选参数,用于记录发生的时间,默认为 time.time()
指定端口
tensorboard --logdir=logs 打开默认的端口
tensorboard --logdir=logs --port=指定的端口数字
7、TensorBoard的使用(二)
add_image()
opencv读取的是numpy类型数据

8、Transforms的使用(一)
如何使用transforms

数据类型tensor
9、Transforms的使用(二)
网络搭建torch.nn.Module

卷积操作
torch.nn.functional.conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1)


神经网络-卷积层



3万+

被折叠的 条评论
为什么被折叠?



