数值分析(四)

矩阵特征值与特征向量的计算

乘幂法与反幂法

乘幂法

V ( k ) = A V ( k − 1 ) V^{(k)} = AV^{(k-1)} V(k)=AV(k1)

  • 模最大特征值唯一
    λ 1 = lim ⁡ k → ∞ V i ( k + 1 ) V i ( k ) \lambda_1 = \lim_{k\rightarrow\infty} \frac{V_i^{(k+1)}}{V^{(k)}_i} λ1=klimVi(k)Vi(k+1)

    x = c V ( k ) x = c V^{(k)} x=cV(k)

  • 模最大特征值不唯一

    不同初始值对应不同的特征向量

  • 模最大特征值有不同符号
    λ 1 2 = lim ⁡ k → ∞ V ( k + 2 ) V ( k ) , λ 2 = − λ 1 \lambda_1^2 = \lim_{k\rightarrow \infty} \frac{V^{(k+2)}}{V^{(k)}} ,\lambda_2 = -\lambda_1 λ12=klimV(k)V(k+2),λ2=λ1

    V ( k + 1 ) + λ 1 V ( k ) ≈ x 1 ( λ 1 ) V ( k + 1 ) − λ 1 V ( k ) ≈ x 2 ( λ 2 ) \begin{aligned} &V^{(k+1)} + \lambda_1V^{(k)} \approx x_1(\lambda_1)\\ &V^{(k+1)} - \lambda_1V^{(k)} \approx x_2(\lambda_2)\\ \end{aligned} V(k+1)+λ1V(k)x1(λ1)V(k+1)λ1V(k)x2(λ2)

反幂法

V ( k + 1 ) = A − 1 V ( k ) V^{(k+1)} = A^{-1}V^{(k)} V(k+1)=A1V(k)

  • 原点平移法: A − p I A-pI ApI,可以求出 p p p附近的特征值

Jacobi方法

寻找正交矩阵 R 1 , R 2 ⋯   , R n R_1,R_2\cdots,R_n R1,R2,Rn
R n ⋯ R 2 R 1 A R 1 T R 2 T ⋯ R n = Λ R_n \cdots R_2 R_1 A R_1^T R_2^T \cdots R_n = \Lambda RnR2R1AR1TR2TRn=Λ

QR分解

H o u s e h o l d e r Householder Householder变换中 α \alpha α a 1 a_1 a1符号相反

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

愤怒的卤蛋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值