rk3588部署深度学习模型

1.部署seg

笔者试过paddleseg和mmseg里的fastscnn,后者比前者更快,故部署时选用了该模型。
流程:
1.导出onnx
2.在x86的Ubuntu中安装好rknntoolkit后(注意这里的toolkit要和板子上推理的toolkitlite版本对齐),写转换脚本,流程为

rknn = RKNN(verbose=True) #创建RKNN执行对象
rknn.config(mean_values=[[123.675, 116.28, 103.53]]
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值