【李宏毅-机器学习笔记三】梯度下降 gradient descent理论依据和函数优化

本文探讨了机器学习中优化损失函数的策略,介绍了Adagrad自动调整学习率的方法,以及特征缩放(featurescaling)的重要性,确保参数在同一范围内变化,避免某单一参数过度影响模型。同时,解析了梯度下降损失函数背后的数学原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在损失函数中,为了寻找最小的损失函数的值
需要对 学习率(learning rating)进行修改:随着 损失函数L 的取值不同,会越来越接近与最小值,此时学习率也应当越来越小。手动地去调节非常麻烦,有一种自动去调小学习率的方法-Adagrad

Adagrad:
在这里插入图片描述在这里插入图片描述学习率 除以 损失函数在g0到此时这个点的微分平方的和 的平方根

二.feature scaling

讲多个不同的参数尽量调节在同一个范围。避免出现某一个参数的变化对函数得影响特别大的情况。
在这里插入图片描述在这里插入图片描述在这里插入图片描述standard deviation 是标准差 表示数据之间的离散程度。而在feature scaling 中则是某一列的标准差

三.梯度下降损失函数的理论依据

主要依据是泰勒级数和向量数量积
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值