费用流建模


一,基础使用

  • 基于 E K EK EK 算法的实现,把 B F S BFS BFS可行流搜索函数改写成为 s p f a spfa spfa 求解(最长)最短路扩展
  • 保证最大流的前提之下求解最小(大)费用
  • 0xcf 是最费用流,0x3f 是最小费用最大流
  • 加边传参: (端点,端点,流量上界,费用)
void add(int a,int b,int c,int d)
{
    e[idx]=b; ne[idx]=h[a]; w[idx]=d; f[idx]=c; h[a]=idx++;
    e[idx]=a; ne[idx]=h[b]; w[idx]=-d; f[idx]= 0; h[b]=idx++;
}

bool spfa()
{
    queue<int>q;
    Mset(d,-0x3f); Mset(incf,0);
    q.push(S); st[S]=1; d[S]= 0; incf[S]=INF;
    while (q.size())
    {
        int top = q.front();
        q.pop();
        st[top]= 0;
        mrep(i,top)
        {
            int ver=e[i];
            if(f[i] && d[ver]<d[top]+w[i])
            {
                d[ver]=d[top]+w[i];
                pre[ver]=i;
                incf[ver] = min(f[i],incf[top]);
                if(!st[ver])
                {
                    q.push(ver); st[ver]=1;
                }
            }
        }
    }
    return incf[T]>0;
}

int EK()
{
    int flow = 0;
    int cans = 0;
    while (spfa())
    {
        flow += incf[T];
        cans += incf[T]*d[T];
        for(int i=T;i!=S;i=e[pre[i]^1])
        {
            int tx = pre[i];
            f[tx] -= incf[T];
            f[tx^1] += incf[T];
        }
    }
    return cans;
}

一(半),(同时)快解最大和最小费用

  • 1,多退少补,退流
  • 2,边权取反,大小颠倒(负数入小跟堆成为大根堆)
  • 3,回归实际,费用流取相反数
int main()
{
    wri(EK()); puts("");

    for(int i=0;i<=idx;i+=2)
    {
        f[i]+=f[i^1];
        f[i^1]=0;
        w[i] = -w[i];
        w[i^1] = -w[i^1];
    }
    wri(-EK());
}

二,带权二分图匹配

三,网格图(极度稠密)建模

核心:网格编号

rep(i,1,n)
    {
        rep(j,1,n)
        {
            read(cost[i][j]);
            id[i][j]=++cnt;
        }
    }
  • 约定
    1,id[i][j] * 2 作为某点的入点
    2,id[i][j] * 2 + 1 作为某点的入点
    3,点权作为出点和入点之间的费用加入,一般流量为1(视情况)

特例 1,点权不重复积累类型

  • 在方格图中,如果经过了某个点,还能过再次经过,但是不能积累点权了,那需要两条边(一条可行( c = i n f c = inf c=inf),一条限制走一次( c = 1 c = 1 c=1))

例题:

https://www.acwing.com/problem/content/384/

在一个 N × N N×N N×N 的矩形网格中,每个格子里都写着一个非负整数。可以从左上角到右下角安排 K K K 条路线,每一步只能往下或往右,沿途经过的格子中的整数会被取走。
若多条路线重复经过一个格子,只取一次。求能取得的整数的和最大是多少。


int main()
{
    Mset(h,-1); idx = 0;
    add(S,id[1][1]*2,m,0);
    add(id[n][n]*2+1,T,m,0);

    rep(i,1,n)
    {
        rep(j,1,n)
        {
            add(id[i][j]*2,id[i][j]*2+1,1,cost[i][j]);
            add(id[i][j]*2,id[i][j]*2+1,INF,0);

            if(i<n) add(id[i][j]*2+1,id[i+1][j]*2,INF,0);
            if(j<n) add(id[i][j]*2+1,id[i][j+1]*2,INF,0);
        }
    }
}

特例 2,边权不重复积累

四,拆点

1,一般思想

  • 出点入点,借助(容量)限制点上(最大权值或者即使在边上也能转到点上)
  • 不限于两点拆法,多点拆法是存在的

2,最大权不相交路径

  • 限制点权和边权:最大权完全不相交路径
  • 仅限制点权:最大无相交边路径
  • 仅限制边权:最大无相交公共点路径

五,上下界可行流

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

流苏贺风

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值