torch.optim.SGD 和 torch.optim.Adam的区别?

本文对比了深度学习中的两种常用优化器SGD和Adam,介绍了SGD的简单计算和大规模数据集适用性,以及其受噪声影响的缺点;Adam则结合动量和自适应学习率,具有更快收敛和稳定性,但对小批量数据可能不如SGD,适用于复杂网络和非凸优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Adam优化器和SGD(随机梯度下降)优化器是深度学习中常用的两种优化算法,它们在优化模型参数方面有一些区别。

torch.optim.SGD

SGD优化器是基于随机梯度下降的算法,它以每个样本的梯度为基准来更新模型的参数。

优点

计算简单,对大规模数据集可扩展性强。

缺点

SGD容易受到噪声的影响,因为每次更新只使用一个样本的梯度,可能会出现参数更新不稳定的情况,导致训练过程震荡。

适合的场景

SGD适用于大规模数据集和计算资源有限的情况。

torch.optim.Adam

Adam优化器是一种结合了动量(momentum)和自适应学习率的优化算法。

除了使用每个样本的梯度来更新模型参数外,Adam还考虑了过去一段时间的梯度的平均值和二次方平均值。

优点

1.可以更好地适应不同的学习率,减少参数更新的波动,加快收敛速度。
2.Adam还比SGD更稳定,对于大型神经网络和复杂的非凸优化问题效果更好。

缺点

它需要额外的内存来存储和更新梯度的平均值和二次方平均值。对于小批量训练数据(batch size较小),Adam的效果可能不如SGD。因为Adam基于梯度的平均值和二次方平均值来调整学习率,而这些统计量可能受到小批量样本的偏差影响,导致学习率的调整不准确。

适合的场景

Adam适用于复杂的非凸优化问题和大型神经网络。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

computer_vision_chen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值