第四节课——XTuner 微调 LLM:1.8B、多模态、Agent(笔记+作业)

课堂笔记

Finetune简介

两种Finetune范式

LLM的下游应用中,增量预训练和指令跟随是经常会用到两种的微调模式。

两种范式的举例

一条数据的一生

微调方案LoRA & QLORA

LLM的参数量主要集中在模型中的Linear,训练这些参数会耗费大量的显存。

LoRA通过在原本的Linear旁,新增一个支路,包含两个连续的小Linear,新增的这个支路通常叫做Adapter。

Adapter参数量远小于原本的Linear,能大幅降低训练的显存消耗。

XTuner介绍

XTuner微调框架,是一个打包好的大模型微调工具箱。

功能亮点:

与LLaMa-Factory的横向对比:

XTuner快速上手

XTuner还支持工具类模型的对话,更多详见HuggingFace Hub(xtuner/.lama-2-7b-glora-moss-O03-sft)

数据处理流程

多数据样本拼接

8GB显存玩转LLM

Flash Attention和DeepSpeed ZeRO是XTuner最重要的两个优化技巧

优化前与优化后的比较

InternLM21.8B模型

多模态LLM微调        

给LLM装上电子眼:多模态LLM原理简介

什么型号的电子眼:LLaVA方案简介

作业——训练自己的小助手认知

常规训练

300轮训练结果

600轮训练结果

704轮训练结果

但是训练出来的数据格式是pytorch格式的,因此需要将其转化为更常见的Huggingface格式

格式转化成功:

在 XTuner 中也是提供了一键整合的指令:

可以看到模型已经严重过拟合,回复的话就只有 “我是xx大佬的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦” 这句话,可以很明显的看出与原模型的差异。

Web demo 部署

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值