课堂笔记
Finetune简介
两种Finetune范式
LLM的下游应用中,增量预训练和指令跟随是经常会用到两种的微调模式。
两种范式的举例
一条数据的一生
微调方案LoRA & QLORA
LLM的参数量主要集中在模型中的Linear,训练这些参数会耗费大量的显存。
LoRA通过在原本的Linear旁,新增一个支路,包含两个连续的小Linear,新增的这个支路通常叫做Adapter。
Adapter参数量远小于原本的Linear,能大幅降低训练的显存消耗。
XTuner介绍
XTuner微调框架,是一个打包好的大模型微调工具箱。
功能亮点:
与LLaMa-Factory的横向对比:
XTuner快速上手
XTuner还支持工具类模型的对话,更多详见HuggingFace Hub(xtuner/.lama-2-7b-glora-moss-O03-sft)
数据处理流程
多数据样本拼接
8GB显存玩转LLM
Flash Attention和DeepSpeed ZeRO是XTuner最重要的两个优化技巧
优化前与优化后的比较
InternLM21.8B模型
多模态LLM微调
给LLM装上电子眼:多模态LLM原理简介
什么型号的电子眼:LLaVA方案简介
作业——训练自己的小助手认知
常规训练
300轮训练结果
600轮训练结果
704轮训练结果
但是训练出来的数据格式是pytorch格式的,因此需要将其转化为更常见的Huggingface格式
格式转化成功:
在 XTuner 中也是提供了一键整合的指令:
可以看到模型已经严重过拟合,回复的话就只有 “我是xx大佬的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦” 这句话,可以很明显的看出与原模型的差异。