广义线性回归模型之0,1变量回归(logit/probit回归)—R语言实现

本文介绍了如何使用R语言进行广义线性回归,特别是针对0-1因变量的Logit和Probit回归模型。讨论了广义线性模型的构成,包括随机部分、线性部分和连接函数。文章通过多变量情况下的案例分析,展示了如何运用glm()函数进行模型构建,并探讨了数据集中各变量与因变量的相关性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、广义线性回归

在这里插入图片描述
广义线性模型有三个组成部分:
(1) 随机部分, 即变量所属的指数族分布 族成员, 诸如正态分布, 二项分布, Poisson 分布等等. (2) 线性部分, 即 η = x⊤β. (3) 连接函数 g(µ) = η。 R 中的广义线性模型函数glm() 对指数族中某分布的默认连接函数 是其典则连接函数, 下表列出了 R 函数glm() 所用的某些指数族分布的 典则连接函数.
在这里插入图片描述

2、0-1因变量的回归模型

对于因变量为0,1变量的问题,可以考虑两种模型来解决
在这里插入图片描述
经过Probit变换Logit变换,两种模型可以写成:
在这里插入图片描述

多变量情况:

logit回归
在这里插入图片描述
probit回归
在这里插入图片描述

3、案例分析

R中的广义线性回归函数为:glm()
语法为:glm(formula, family = gaussian, data, weights, subset, na.action, start = NULL, etastart, mustart, offset, control = glm.control(…), model = TRUE, method = “glm.fit”, x = FALSE, y = TRUE, contrasts = NULL, …)
与线性回归lm不同之处就在于参数family,这个参数的作用在于定义一个族以及连接函数,使用该连接函数将因变量的期望与自变量联系起来,例如:上面讲到的logit模型和probit模型的参数分别为family= binomial(link=logit)和family= binomial(link=probit).

数据集介绍

数据来自新竹市输血服务中心的记录http://archive.ics.uci.edu/ml/datasets/Blood+Transfusion+Service+Center变量有Recency(上次献血距离研究时的月份),Frequency(总献血次数),Time(第一次献血是多少个月之前),Donate(是否将在2007年3月再献血,1为会,0为不会)
在这里插入图片描述
分别三个变量与因变量的相关性
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
通过图可以看出,三个变量与因变量还是有一定的关系的。
完整代码附上,备注的比较详细,也比较简单。

a<-read.csv("Trans.csv",header=T)
a<-a[,-3] #去掉第三列
names(a)<-c("x1","x2","x3","y") #设置变量名
a1<-a[c(1:400),] #取前400行数据,赋值给a1
a2=a[c(401:748),] #取出从401行开始剩下所有行的数据,赋值给a2

a1[c(1:5),] #展示a1前5行数据

#画图
par(mfrow=c(2,2)) #设置画图模式为2*2的格式
boxplot(x1~y,data=a1,main
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值