学习通信原理之——什么是傅立叶级数

要学习通信,一定绕不开的就是傅里叶级数和傅里叶变换,之前学信号与系统的时候没有好好学,这里看了B站的网课,豁然开朗,所以特地来写一篇学习笔记,来激励自己,也算是检验自己学习成果了。

B站网课链接:https://www.bilibili.com/video/BV1Et411R78v?share_source=copy_web


Part 1 三角函数的正交性

首先要介绍的就是三角函数系:集合:
{ 1 , sin ⁡ x . cos ⁡ x , s i n 2 x , cos ⁡ 2 x , . . . . . . sin ⁡ n x , cos ⁡ n x } n = 0 , 1 , 2 , 3 , . . . . . . \left\{ 1,\sin x.\cos x,sin2x,\cos 2x,......\sin nx,\cos nx \right\} n=0,1,2,3,...... {1,sinx.cosx,sin2x,cos2x,......sinnx,cosnx}n=0,1,2,3,......
此处为什么没有0呢,因为

sin ⁡ ( 0 ⋅ x ) = 0 cos ⁡ ( 0 ⋅ x ) = 0 \sin \left( 0\cdot x \right) =0 \\ \cos \left( 0\cdot x \right) =0 sin(0x)=0cos(0x)=0
所以省略了0

三角函数的正交性(就是垂直):
∫ − π π sin ⁡ ( n x ) cos ⁡ ( m x ) d x ( n ≠ m ) = 0 ∫ − π π cos ⁡ ( n x ) cos ⁡ ( m x ) d x ( n ≠ m ) = 0 \int_{-\pi}^{\pi}{\sin \left( nx \right) \cos \left( mx \right) \mathrm{d}x}\left( n\ne m \right)=0 \\ \int_{-\pi}^{\pi}{\cos \left( nx \right) \cos \left( mx \right) \mathrm{d}x}\left( n\ne m \right)=0 ππsin(nx)cos(mx)dx(n=m)=0ππcos(nx)cos(mx)dx(n=m)=0

那么该如何证明呢?

证明过程:

因为
cos ⁡ ( n x ) ⋅ cos ⁡ ( m x ) = 1 2 [ cos ⁡ ( n − m ) x + cos ⁡ ( n + m ) x ] \cos \left( nx \right) \cdot \cos \left( mx \right) =\frac{1}{2}\left[ \cos \left( n-m \right) x+\cos \left( n+m \right) x \right] cos(nx)cos(mx)=21[cos(nm)x+cos(n+m)x]

∫ − π π cos ⁡ ( n x ) cos ⁡ ( m x ) d x ( n ≠ m ) = 1 2 [ ∫ − π π cos ⁡ ( n − m ) x d x + ∫ − π π cos ⁡ ( n + m ) x d x ] = 1 2 [ sin ⁡ ( n − m ) x ( n − m ) ∣ − π π + sin ⁡ ( n + m ) x ( n + m ) ∣ − π π ] = 0 \begin{aligned} \int_{-\pi}^{\pi}{\cos \left( nx \right) \cos \left( mx \right) \mathrm{d}x}\left( n\ne m \right) & =\frac{1}{2}\left[ \int_{-\pi}^{\pi}{\cos \left( n-m \right) x\mathrm{d}x+\int_{-\pi}^{\pi}{\cos \left( n+m \right) x\mathrm{d}x}} \right] \\ &=\frac{1}{2}\left[ \frac{\sin \left( n-m \right) x}{\left( n-m \right)}\mid_{-\pi}^{\pi}+\frac{\sin \left( n+m \right) x}{\left( n+m \right)}\mid_{-\pi}^{\pi} \right] \\ &=0 \end {aligned} ππcos(nx)cos(mx)dx(n=m)=21[ππcos(nm)xdx+ππcos(n+m)xdx]=21[(nm)sin(nm)xππ+(n+m)sin(n+m)xππ]=0

I F    ( m = n ) ∫ − π π cos ⁡ ( n x ) cos ⁡ ( m x ) d x = 1 2 [ ∫ − π π 1 d x + ∫ − π π cos ⁡ ( 2 n x ) d x ] = 1 2 ∫ − π π 1 d x = π IF\,\,\left( m=n \right) \int_{-\pi}^{\pi}{\cos \left( nx \right) \cos \left( mx \right) \mathrm{d}x}=\frac{1}{2}\left[ \int_{-\pi}^{\pi}{1\mathrm{d}x+}\int_{-\pi}^{\pi}{\cos \left( 2nx \right) \mathrm{d}x} \right] =\frac{1}{2}\int_{-\pi}^{\pi}{1\mathrm{d}x=\pi} IF(m=n)ππcos(nx)cos(mx)dx=21[ππ1dx+ππcos(2nx)dx]=21ππ1dx=π
上式
cos ⁡ ( 2 n x ) = cos ⁡ ( 0 ⋅ x ) ⋅ cos ⁡ ( 2 n x ) = 0 \cos \left( 2nx \right) =\cos \left( 0\cdot x \right) \cdot \cos \left( 2nx \right) =0 cos(2nx)=cos(0x)cos(2nx)=0
则最后只剩前一项

证明完毕

Part 2 周期为"2π"的函数展开为傅里叶级数

T = 2 π              f ( x ) = f ( x + 2 π ) T=2\pi \,\, ~~~~~~~~~f\left( x \right) =f\left( x+2\pi \right) T=2π         f(x)=f(x+2π)

这是傅里叶级数展开的一种写法

f ( x ) = ∑ n = 0 ∞ ( a n cos ⁡ n x + b n sin ⁡ n x ) f\left( x \right) =\sum_{n=0}^{\infty}{\left( a_n\cos nx+b_n\sin nx \right)} f(x)=n=0(ancosnx+bnsinnx)

但我们可以看到,大部分书中都是这么写的

f ( x ) = a 0 2 + ∑ n = 0 ∞ ( a n cos ⁡ n x + b n sin ⁡ n x ) f\left( x \right) =\frac{a_0}{2}+\sum_{n=0}^{\infty}{\left( a_n\cos nx+b_n\sin nx \right)} f(x)=2a0+n=0(ancosnx+bnsinnx)

看到了两式的 a 0 {a}_{0} a0不一样,为什么呢?

1.开始计算 a 0 {a}_{0} a0

首先式子两边进行积分
f ( x ) = ∑ n = 0 ∞ ( a n cos ⁡ n x + b n sin ⁡ n x ) f\left( x \right) =\sum_{n=0}^{\infty}{\left( a_n\cos nx+b_n\sin nx \right)} f(x)=n=0(ancosnx+bnsinnx)
得到
∫ − π π f ( x ) d x = ∫ − π π a 0 d x + ∫ − π π ∑ n = 1 ∞ ( a n cos ⁡ n x ) d x + ∫ − π π ∑ n = 1 ∞ ( b n sin ⁡ n x ) d x \int_{-\pi}^{\pi}{f\left( x \right) \mathrm{d}x=}\int_{-\pi}^{\pi}{a_0\mathrm{d}x}+\int_{-\pi}^{\pi}{\sum_{n=1}^{\infty}{\left( a_n\cos nx \right)}\mathrm{d}x}+\int_{-\pi}^{\pi}{\sum_{n=1}^{\infty}{\left( b_n\sin nx \right)}\mathrm{d}x} ππf(x)dx=ππa0dx+ππn=1(ancosnx)dx+ππn=1(bnsinnx)dx

我们可以将 a n {a}_{n} an b n {b}_{n} bn提出到积分符号前,得到
∫ − π π f ( x ) d x = ∫ − π π a 0 d x + a n ∫ − π π ∑ n = 1 ∞ ( cos ⁡ n x ) d x + b n ∫ − π π ∑ n = 1 ∞ ( sin ⁡ n x ) d x \int_{-\pi}^{\pi}{f\left( x \right) \mathrm{d}x=}\int_{-\pi}^{\pi}{a_0\mathrm{d}x}+a_n\int_{-\pi}^{\pi}{\sum_{n=1}^{\infty}{\left( \cos nx \right)}\mathrm{d}x}+b_n\int_{-\pi}^{\pi}{\sum_{n=1}^{\infty}{\left( \sin nx \right)}\mathrm{d}x} ππf(x)dx=ππa0dx+anππn=1(cosnx)dx+bnππn=1(sinnx)dx

接下来,我们可以将cosnx和sinnx视作1cosnx和1sinnx,利用三角函数的正交性将这两项化为0

我们可以得到
∫ − π π f ( x ) d x = a 0 ∫ − π π 1 d x = 2 π a 0 \int_{-\pi}^{\pi}{f\left( x \right) \mathrm{d}x=}a_0\int_{-\pi}^{\pi}{1\mathrm{d}x=2\pi a_0} ππf(x)dx=a0ππ1dx=2πa0

最后,我们将 a 0 {a}_{0} a0可以解出,

a 0 = 1 2 π ∫ − π π f ( x ) d x a_0=\frac{1}{2\pi}\int_{-\pi}^{\pi}{f\left( x \right) \mathrm{d}x} a0=2π1ππf(x)dx

与前式对照
f ( x ) = a 0 2 + ∑ n = 0 ∞ ( a n cos ⁡ n x + b n sin ⁡ n x ) f\left( x \right) =\frac{a_0}{2}+\sum_{n=0}^{\infty}{\left( a_n\cos nx+b_n\sin nx \right)} f(x)=2a0+n=0(ancosnx+bnsinnx)
为什么那里的 a 0 {a}_{0} a0有1/2呢,其实就是为了看着方便,将 a 0 {a}_{0} a0变为
a 0 = 1 π ∫ − π π f ( x ) d x a_0=\frac{1}{\pi}\int_{-\pi}^{\pi}{f\left( x \right) \mathrm{d}x} a0=π1ππf(x)dx

现在就感觉有点蒙蔽了,你这个 a 0 {a}_{0} a0带入到式子中是除以2了,那 a 0 {a}_{0} a0的原本的值就变化了,这里要强调一点,我们之前算出来的 a 0 {a}_{0} a0,一直都是
a 0 = 1 2 π ∫ − π π f ( x ) d x a_0=\frac{1}{2\pi}\int_{-\pi}^{\pi}{f\left( x \right) \mathrm{d}x} a0=2π1ππf(x)dx
这里只是为了看起来方便,就加上了1/2,所以,一句话总结

a 0 {a}_{0} a0非彼 a 0 {a}_{0} a0

2.计算 a n {a}_{n} an

  • 先两边同乘 c o s m x cosmx cosmx
  • 两边再进行积分

可以得到如下式子
∫ − π π f ( x ) cos ⁡ m x d x = ∫ − π π a 0 2 cos ⁡ m x d x + ∫ − π π ∑ n = 1 ∞ ( a n cos ⁡ n x cos ⁡ m x ) d x + ∫ − π π ∑ n = 1 ∞ ( b n sin ⁡ n x cos ⁡ m x ) d x \int_{-\pi}^{\pi}{f\left( x \right) \cos mx\mathrm{d}x=}\int_{-\pi}^{\pi}{\frac{a_0}{2}\cos mx\mathrm{d}x}+\int_{-\pi}^{\pi}{\sum_{n=1}^{\infty}{\left( a_n\cos nx\cos mx \right)}\mathrm{d}x}+\int_{-\pi}^{\pi}{\sum_{n=1}^{\infty}{\left( b_n\sin nx\cos mx \right)}\mathrm{d}x} ππf(x)cosmxdx=ππ2a0cosmxdx+ππn=1(ancosnxcosmx)dx+ππn=1(bnsinnxcosmx)dx

同理,根据三角函数的正交性,我们可以得到
∫ − π π f ( x ) cos ⁡ m x d x = ∫ − π π ∑ n = 1 ∞ ( a n cos ⁡ n x cos ⁡ m x ) d x \int_{-\pi}^{\pi}{f\left( x \right) \cos mx\mathrm{d}x=}\int_{-\pi}^{\pi}{\sum_{n=1}^{\infty}{\left( a_n\cos nx\cos mx \right)}\mathrm{d}x} ππf(x)cosmxdx=ππn=1(ancosnxcosmx)dx

当m=n时,整个式子就变成了
∫ − π π f ( x ) cos ⁡ m x d x = ∫ − π π ∑ n = 1 ∞ ( a n cos ⁡ 2 n x ) d x \int_{-\pi}^{\pi}{f\left( x \right) \cos mx\mathrm{d}x=}\int_{-\pi}^{\pi}{\sum_{n=1}^{\infty}{\left( a_n\cos ^2nx \right)}\mathrm{d}x} ππf(x)cosmxdx=ππn=1(ancos2nx)dx

根据三角函数呀的正交性,可以将式子化为
∫ − π π f ( x ) cos ⁡ m x d x = a n π \int_{-\pi}^{\pi}{f\left( x \right) \cos mx\mathrm{d}x=}a_n\pi ππf(x)cosmxdx=anπ

所以,计算出 a n {a}_{n} an
a n = 1 π ∫ − π π f ( x ) cos ⁡ m x d x a_n=\frac{1}{\pi}\int_{-\pi}^{\pi}{f\left( x \right) \cos mx\mathrm{d}x} an=π1ππf(x)cosmxdx

2.计算 b n {b}_{n} bn

  • 先两边同乘 s i n n x sinnx sinnx
  • 两边再进行积分

可以得到如下式子
∫ − π π f ( x ) sin ⁡ m x d x = ∫ − π π a 0 2 sin ⁡ m x d x + ∫ − π π ∑ n = 1 ∞ ( a n cos ⁡ n x sin ⁡ m x ) d x + ∫ − π π ∑ n = 1 ∞ ( b n sin ⁡ n x sin ⁡ m x ) d x \int_{-\pi}^{\pi}{f\left( x \right) \sin mx\mathrm{d}x=}\int_{-\pi}^{\pi}{\frac{a_0}{2}\sin mx\mathrm{d}x}+\int_{-\pi}^{\pi}{\sum_{n=1}^{\infty}{\left( a_n\cos nx\sin mx \right)}\mathrm{d}x}+\int_{-\pi}^{\pi}{\sum_{n=1}^{\infty}{\left( b_n\sin nx\sin mx \right)}\mathrm{d}x} ππf(x)sinmxdx=ππ2a0sinmxdx+ππn=1(ancosnxsinmx)dx+ππn=1(bnsinnxsinmx)dx

同理,根据三角函数的正交性,我们可以得到
∫ − π π f ( x ) sin ⁡ n x d x = b n ∫ − π π ∑ n = 1 ∞ ( sin ⁡ n x sin ⁡ n x ) d x \int_{-\pi}^{\pi}{f\left( x \right) \sin nx\mathrm{d}x=}b_n\int_{-\pi}^{\pi}{\sum_{n=1}^{\infty}{\left( \sin nx\sin nx \right)}\mathrm{d}x} ππf(x)sinnxdx=bnππn=1(sinnxsinnx)dx
因为 ∫ − π π ( sin ⁡ n x sin ⁡ n x ) d x = 0 \int_{-\pi}^{\pi}{{\left( \sin nx\sin nx \right)}\mathrm{d}x}=0 ππ(sinnxsinnx)dx=0

∫ − π π f ( x ) sin ⁡ n x d x = b n π \int_{-\pi}^{\pi}{f\left( x \right) \sin nx\mathrm{d}x=}b_n \pi ππf(x)sinnxdx=bnπ

所以
b n = 1 π ∫ − π π f ( x ) sin ⁡ n x d x b_n=\frac{1}{\pi}\int_{-\pi}^{\pi}{f\left( x \right) \sin nx\mathrm{d}x} bn=π1ππf(x)sinnxdx

总结

a 0 = 1 2 π ∫ − π π f ( x ) d x a_0=\frac{1}{2\pi}\int_{-\pi}^{\pi}{f\left( x \right) \mathrm{d}x} a0=2π1ππf(x)dx

a n = 1 π ∫ − π π f ( x ) cos ⁡ n x d x a_n=\frac{1}{\pi}\int_{-\pi}^{\pi}{f\left( x \right) \cos nx\mathrm{d}x} an=π1ππf(x)cosnxdx

b n = 1 π ∫ − π π f ( x ) sin ⁡ n x d x b_n=\frac{1}{\pi}\int_{-\pi}^{\pi}{f\left( x \right) \sin nx\mathrm{d}x} bn=π1ππf(x)sinnxdx

  • 5
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Sol-itude

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值