# 学习通信原理之——什么是傅立叶级数

6 篇文章 5 订阅

B站网课链接：https://www.bilibili.com/video/BV1Et411R78v?share_source=copy_web

### Part 1 三角函数的正交性

{ 1 , sin ⁡ x . cos ⁡ x , s i n 2 x , cos ⁡ 2 x , . . . . . . sin ⁡ n x , cos ⁡ n x } n = 0 , 1 , 2 , 3 , . . . . . . \left\{ 1,\sin x.\cos x,sin2x,\cos 2x,......\sin nx,\cos nx \right\} n=0,1,2,3,......

sin ⁡ ( 0 ⋅ x ) = 0 cos ⁡ ( 0 ⋅ x ) = 0 \sin \left( 0\cdot x \right) =0 \\ \cos \left( 0\cdot x \right) =0

∫ − π π sin ⁡ ( n x ) cos ⁡ ( m x ) d x ( n ≠ m ) = 0 ∫ − π π cos ⁡ ( n x ) cos ⁡ ( m x ) d x ( n ≠ m ) = 0 \int_{-\pi}^{\pi}{\sin \left( nx \right) \cos \left( mx \right) \mathrm{d}x}\left( n\ne m \right)=0 \\ \int_{-\pi}^{\pi}{\cos \left( nx \right) \cos \left( mx \right) \mathrm{d}x}\left( n\ne m \right)=0

cos ⁡ ( n x ) ⋅ cos ⁡ ( m x ) = 1 2 [ cos ⁡ ( n − m ) x + cos ⁡ ( n + m ) x ] \cos \left( nx \right) \cdot \cos \left( mx \right) =\frac{1}{2}\left[ \cos \left( n-m \right) x+\cos \left( n+m \right) x \right]

∫ − π π cos ⁡ ( n x ) cos ⁡ ( m x ) d x ( n ≠ m ) = 1 2 [ ∫ − π π cos ⁡ ( n − m ) x d x + ∫ − π π cos ⁡ ( n + m ) x d x ] = 1 2 [ sin ⁡ ( n − m ) x ( n − m ) ∣ − π π + sin ⁡ ( n + m ) x ( n + m ) ∣ − π π ] = 0 \begin{aligned} \int_{-\pi}^{\pi}{\cos \left( nx \right) \cos \left( mx \right) \mathrm{d}x}\left( n\ne m \right) & =\frac{1}{2}\left[ \int_{-\pi}^{\pi}{\cos \left( n-m \right) x\mathrm{d}x+\int_{-\pi}^{\pi}{\cos \left( n+m \right) x\mathrm{d}x}} \right] \\ &=\frac{1}{2}\left[ \frac{\sin \left( n-m \right) x}{\left( n-m \right)}\mid_{-\pi}^{\pi}+\frac{\sin \left( n+m \right) x}{\left( n+m \right)}\mid_{-\pi}^{\pi} \right] \\ &=0 \end {aligned}

I F    ( m = n ) ∫ − π π cos ⁡ ( n x ) cos ⁡ ( m x ) d x = 1 2 [ ∫ − π π 1 d x + ∫ − π π cos ⁡ ( 2 n x ) d x ] = 1 2 ∫ − π π 1 d x = π IF\,\,\left( m=n \right) \int_{-\pi}^{\pi}{\cos \left( nx \right) \cos \left( mx \right) \mathrm{d}x}=\frac{1}{2}\left[ \int_{-\pi}^{\pi}{1\mathrm{d}x+}\int_{-\pi}^{\pi}{\cos \left( 2nx \right) \mathrm{d}x} \right] =\frac{1}{2}\int_{-\pi}^{\pi}{1\mathrm{d}x=\pi}

cos ⁡ ( 2 n x ) = cos ⁡ ( 0 ⋅ x ) ⋅ cos ⁡ ( 2 n x ) = 0 \cos \left( 2nx \right) =\cos \left( 0\cdot x \right) \cdot \cos \left( 2nx \right) =0

### Part 2 周期为"2π"的函数展开为傅里叶级数

T = 2 π              f ( x ) = f ( x + 2 π ) T=2\pi \,\, ~~~~~~~~~f\left( x \right) =f\left( x+2\pi \right)

f ( x ) = ∑ n = 0 ∞ ( a n cos ⁡ n x + b n sin ⁡ n x ) f\left( x \right) =\sum_{n=0}^{\infty}{\left( a_n\cos nx+b_n\sin nx \right)}

f ( x ) = a 0 2 + ∑ n = 0 ∞ ( a n cos ⁡ n x + b n sin ⁡ n x ) f\left( x \right) =\frac{a_0}{2}+\sum_{n=0}^{\infty}{\left( a_n\cos nx+b_n\sin nx \right)}

1.开始计算 a 0 {a}_{0}

f ( x ) = ∑ n = 0 ∞ ( a n cos ⁡ n x + b n sin ⁡ n x ) f\left( x \right) =\sum_{n=0}^{\infty}{\left( a_n\cos nx+b_n\sin nx \right)}

∫ − π π f ( x ) d x = ∫ − π π a 0 d x + ∫ − π π ∑ n = 1 ∞ ( a n cos ⁡ n x ) d x + ∫ − π π ∑ n = 1 ∞ ( b n sin ⁡ n x ) d x \int_{-\pi}^{\pi}{f\left( x \right) \mathrm{d}x=}\int_{-\pi}^{\pi}{a_0\mathrm{d}x}+\int_{-\pi}^{\pi}{\sum_{n=1}^{\infty}{\left( a_n\cos nx \right)}\mathrm{d}x}+\int_{-\pi}^{\pi}{\sum_{n=1}^{\infty}{\left( b_n\sin nx \right)}\mathrm{d}x}

∫ − π π f ( x ) d x = ∫ − π π a 0 d x + a n ∫ − π π ∑ n = 1 ∞ ( cos ⁡ n x ) d x + b n ∫ − π π ∑ n = 1 ∞ ( sin ⁡ n x ) d x \int_{-\pi}^{\pi}{f\left( x \right) \mathrm{d}x=}\int_{-\pi}^{\pi}{a_0\mathrm{d}x}+a_n\int_{-\pi}^{\pi}{\sum_{n=1}^{\infty}{\left( \cos nx \right)}\mathrm{d}x}+b_n\int_{-\pi}^{\pi}{\sum_{n=1}^{\infty}{\left( \sin nx \right)}\mathrm{d}x}

∫ − π π f ( x ) d x = a 0 ∫ − π π 1 d x = 2 π a 0 \int_{-\pi}^{\pi}{f\left( x \right) \mathrm{d}x=}a_0\int_{-\pi}^{\pi}{1\mathrm{d}x=2\pi a_0}

a 0 = 1 2 π ∫ − π π f ( x ) d x a_0=\frac{1}{2\pi}\int_{-\pi}^{\pi}{f\left( x \right) \mathrm{d}x}

f ( x ) = a 0 2 + ∑ n = 0 ∞ ( a n cos ⁡ n x + b n sin ⁡ n x ) f\left( x \right) =\frac{a_0}{2}+\sum_{n=0}^{\infty}{\left( a_n\cos nx+b_n\sin nx \right)}

a 0 = 1 π ∫ − π π f ( x ) d x a_0=\frac{1}{\pi}\int_{-\pi}^{\pi}{f\left( x \right) \mathrm{d}x}

a 0 = 1 2 π ∫ − π π f ( x ) d x a_0=\frac{1}{2\pi}\int_{-\pi}^{\pi}{f\left( x \right) \mathrm{d}x}

a 0 {a}_{0} 非彼 a 0 {a}_{0}

2.计算 a n {a}_{n}

• 先两边同乘 c o s m x cosmx
• 两边再进行积分

∫ − π π f ( x ) cos ⁡ m x d x = ∫ − π π a 0 2 cos ⁡ m x d x + ∫ − π π ∑ n = 1 ∞ ( a n cos ⁡ n x cos ⁡ m x ) d x + ∫ − π π ∑ n = 1 ∞ ( b n sin ⁡ n x cos ⁡ m x ) d x \int_{-\pi}^{\pi}{f\left( x \right) \cos mx\mathrm{d}x=}\int_{-\pi}^{\pi}{\frac{a_0}{2}\cos mx\mathrm{d}x}+\int_{-\pi}^{\pi}{\sum_{n=1}^{\infty}{\left( a_n\cos nx\cos mx \right)}\mathrm{d}x}+\int_{-\pi}^{\pi}{\sum_{n=1}^{\infty}{\left( b_n\sin nx\cos mx \right)}\mathrm{d}x}

∫ − π π f ( x ) cos ⁡ m x d x = ∫ − π π ∑ n = 1 ∞ ( a n cos ⁡ n x cos ⁡ m x ) d x \int_{-\pi}^{\pi}{f\left( x \right) \cos mx\mathrm{d}x=}\int_{-\pi}^{\pi}{\sum_{n=1}^{\infty}{\left( a_n\cos nx\cos mx \right)}\mathrm{d}x}

∫ − π π f ( x ) cos ⁡ m x d x = ∫ − π π ∑ n = 1 ∞ ( a n cos ⁡ 2 n x ) d x \int_{-\pi}^{\pi}{f\left( x \right) \cos mx\mathrm{d}x=}\int_{-\pi}^{\pi}{\sum_{n=1}^{\infty}{\left( a_n\cos ^2nx \right)}\mathrm{d}x}

∫ − π π f ( x ) cos ⁡ m x d x = a n π \int_{-\pi}^{\pi}{f\left( x \right) \cos mx\mathrm{d}x=}a_n\pi

a n = 1 π ∫ − π π f ( x ) cos ⁡ m x d x a_n=\frac{1}{\pi}\int_{-\pi}^{\pi}{f\left( x \right) \cos mx\mathrm{d}x}

2.计算 b n {b}_{n}

• 先两边同乘 s i n n x sinnx
• 两边再进行积分

∫ − π π f ( x ) sin ⁡ m x d x = ∫ − π π a 0 2 sin ⁡ m x d x + ∫ − π π ∑ n = 1 ∞ ( a n cos ⁡ n x sin ⁡ m x ) d x + ∫ − π π ∑ n = 1 ∞ ( b n sin ⁡ n x sin ⁡ m x ) d x \int_{-\pi}^{\pi}{f\left( x \right) \sin mx\mathrm{d}x=}\int_{-\pi}^{\pi}{\frac{a_0}{2}\sin mx\mathrm{d}x}+\int_{-\pi}^{\pi}{\sum_{n=1}^{\infty}{\left( a_n\cos nx\sin mx \right)}\mathrm{d}x}+\int_{-\pi}^{\pi}{\sum_{n=1}^{\infty}{\left( b_n\sin nx\sin mx \right)}\mathrm{d}x}

∫ − π π f ( x ) sin ⁡ n x d x = b n ∫ − π π ∑ n = 1 ∞ ( sin ⁡ n x sin ⁡ n x ) d x \int_{-\pi}^{\pi}{f\left( x \right) \sin nx\mathrm{d}x=}b_n\int_{-\pi}^{\pi}{\sum_{n=1}^{\infty}{\left( \sin nx\sin nx \right)}\mathrm{d}x}

∫ − π π f ( x ) sin ⁡ n x d x = b n π \int_{-\pi}^{\pi}{f\left( x \right) \sin nx\mathrm{d}x=}b_n \pi

b n = 1 π ∫ − π π f ( x ) sin ⁡ n x d x b_n=\frac{1}{\pi}\int_{-\pi}^{\pi}{f\left( x \right) \sin nx\mathrm{d}x}

## 总结

a 0 = 1 2 π ∫ − π π f ( x ) d x a_0=\frac{1}{2\pi}\int_{-\pi}^{\pi}{f\left( x \right) \mathrm{d}x}

a n = 1 π ∫ − π π f ( x ) cos ⁡ n x d x a_n=\frac{1}{\pi}\int_{-\pi}^{\pi}{f\left( x \right) \cos nx\mathrm{d}x}

b n = 1 π ∫ − π π f ( x ) sin ⁡ n x d x b_n=\frac{1}{\pi}\int_{-\pi}^{\pi}{f\left( x \right) \sin nx\mathrm{d}x}

• 5
点赞
• 7
收藏
觉得还不错? 一键收藏
• 打赏
• 1
评论
03-22 1万+
04-20 8万+
05-16 608
11-17 2288
10-26 1万+
04-05 2407
03-20 3万+

Sol-itude

¥1 ¥2 ¥4 ¥6 ¥10 ¥20

1.余额是钱包充值的虚拟货币，按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载，可以购买VIP、付费专栏及课程。