电路分析中的齐次定理与叠加定理
齐次定理
齐次定理的描述如下:对于具有唯一解 的线性电路,当只有一个激励源(独立电压源或独立电流源)作用的时候,其响应(电路任意处的电压或电流)与激励成正比。
比如激励是电压源
u
s
u_s
us ,响应是某一支路的电流
i
i
i ,则有
i
=
m
∗
u
s
i=m*u_s
i=m∗us,
m
m
m为常数,仅与电路结构与元件参数有关,与激励源无关。
如上图所示,若是需要求解电流
i
1
,
i
2
i_1,i_2
i1,i2 与激励源
u
s
u_s
us 的关系,首先需要判定该线性电路是否具备唯一解,使用网孔法可以列举以下回路方程:
{
(
R
1
+
R
2
)
i
1
−
R
2
i
2
=
u
s
−
α
R
3
i
1
−
R
2
i
1
+
(
R
2
+
R
3
+
R
4
)
i
2
=
0
\left\{ \begin{aligned} &(R_1 + R_2)i_1 - R_2i_2 &= & u_s \\ &-\alpha R_3 i_1 - R_2i_1 + (R_2+R_3+R_4)i_2 &=0 \end{aligned} \right.
{(R1+R2)i1−R2i2−αR3i1−R2i1+(R2+R3+R4)i2==0us
根据以上线性非齐次方程,若是需要判断有无唯一解,可以判断其系数行列式是否为0,即:
∣
(
R
1
+
R
2
)
−
R
2
−
(
R
2
+
α
R
3
)
(
R
2
+
R
3
+
R
4
)
∣
\begin{vmatrix} (R_1 + R_2) & -R_2 \\ -(R_2 + \alpha R_3) & (R_2+R_3+R_4) \end{vmatrix}
∣∣∣∣(R1+R2)−(R2+αR3)−R2(R2+R3+R4)∣∣∣∣
=
R
1
R
2
+
(
R
1
+
R
2
)
(
R
3
+
R
4
)
−
α
R
2
R
3
=
Δ
=R_1R_2+(R_1+R_2)(R_3+R_4 )-\alpha R_2R_3 =\Delta
=R1R2+(R1+R2)(R3+R4)−αR2R3=Δ
根据线性代数的知识,若是
Δ
\Delta
Δ
≠
\neq
= 0,则上述线性非其次方程组有唯一解,也便是电路齐次定理中所说的惟一的解的线性电路。于是,我们便可以使用克莱姆法则对方程进行求解,得:
{
i
1
=
R
2
+
R
3
+
R
4
Δ
u
s
i
2
=
R
2
+
α
R
3
Δ
u
s
\left\{ \begin{aligned} &i_1= \frac{R_2+R_3+R_4}{\Delta}u_s \\ &i_2=\frac{R_2+\alpha R_3}{\Delta}u_s \end{aligned} \right.
⎩⎪⎪⎨⎪⎪⎧i1=ΔR2+R3+R4usi2=ΔR2+αR3us
叠加定理
叠加定理描述了线性电路的可加性,其内容是:对于具有唯一解的线性电路,多个激励源共同作用时引起的响应(电路中各处的电流、电压)等于各个激励源单独作用(其它激励源为零)时所引起的响应之和。
如以上的反相求和电路的求解,便可以利用叠加定理,先将
u
i
2
,
u
i
3
u_i2,u_i3
ui2,ui3接地,那么电流
i
2
与
i
3
为
0
,
(
N
点
虚
地
)
i_2与i_3为0,(N点虚地)
i2与i3为0,(N点虚地),计算
u
i
1
与
u_i1与
ui1与
u
o
u_o
uo的关系,那么根据反相运算电路的输入输出关系:
u
1
1
R
1
=
−
u
0
R
f
即
u
0
=
−
R
f
∗
u
i
1
R
1
\frac{u_11}{R_1} = \frac{-u_0}{R_f} 即 u_0=-\frac{R_f*u_i1}{R_1}
R1u11=Rf−u0即u0=−R1Rf∗ui1
同理可以使
u
i
1
,
u
i
3
u_i1,u_i3
ui1,ui3接地计算
u
i
2
u_i2
ui2单独作用的效果,使
u
i
1
,
u
i
2
u_i1,u_i2
ui1,ui2接地计算
u
i
3
u_i3
ui3单独作用的效果,如下:
u
o
2
=
−
R
f
R
2
∗
u
i
2
,
u
o
3
=
−
R
f
R
3
∗
u
i
3
u_o2=-\frac{R_f}{R_2}*u_i2, u_o3=-\frac{R_f}{R_3}*u_i3
uo2=−R2Rf∗ui2,uo3=−R3Rf∗ui3
那么,根据叠加定理,它们共同时的输出就是单独作用时的输出相加,即
u
o
=
u
0
1
+
u
o
2
+
u
o
3
=
−
R
f
R
1
∗
u
i
1
−
R
f
R
2
∗
u
i
2
−
R
f
R
3
∗
u
i
3
u_o = u_01+u_o2+u_o3 = -\frac{R_f}{R_1}*u_i1-\frac{R_f}{R_2}*u_i2-\frac{R_f}{R_3}*u_i3
uo=u01+uo2+uo3=−R1Rf∗ui1−R2Rf∗ui2−R3Rf∗ui3
补充知识——克莱姆法则
克莱姆法则是一种求解线性方程组的方法,假设有如下方程组:
{
a
1
X
1
+
b
1
X
2
=
c
1
a
2
X
2
+
b
2
X
2
=
c
2
\left\{ \begin{aligned} &a_1X_1+b_1X_2=c_1\\ &a_2X_2+b_2X_2=c_2 \end{aligned} \right.
{a1X1+b1X2=c1a2X2+b2X2=c2
其系数行列式为
D
D
D,若是D存在并且
D
≠
0
D\neq0
D=0则有如下关系:
D
=
∣
a
1
b
1
a
2
b
2
∣
,
D
1
=
∣
c
1
b
1
c
2
b
2
∣
,
D
2
=
∣
a
1
c
1
a
2
c
2
∣
D=\begin{vmatrix} a_1& b_1 \\ a_2 & b_2 \end{vmatrix},D1=\begin{vmatrix} c_1&b_1\\ c_2&b_2 \end{vmatrix},D2=\begin{vmatrix} a_1&c_1\\ a_2&c_2 \end{vmatrix}
D=∣∣∣∣a1a2b1b2∣∣∣∣,D1=∣∣∣∣c1c2b1b2∣∣∣∣,D2=∣∣∣∣a1a2c1c2∣∣∣∣
X
1
=
D
1
D
,
X
2
=
D
2
D
X_1=\frac{D1}{D},X_2=\frac{D2}{D}
X1=DD1,X2=DD2
在求解
X
1
X_1
X1时用到的
D
1
D1
D1就是在
D
D
D的基础上,用结果列的数代替
X
1
X_1
X1所在系数列的系数,同理在求解
X
2
X_2
X2时用到的
D
2
D2
D2就是在
D
D
D的基础上,用结果列的数代替
X
2
X_2
X2所在系数列的系数。
参考
[1]模拟电子技术基础[M].华成英,童诗白主编;清华大学电子学教研组编.高等教育出版社.2006
[2]电路基础[M].王松林,吴大正,李小平,王辉编著,西安电子科技大学出版社.2008
总结
小的基础知识点回顾,便于日后查看,本人不才,必有疏漏,望指正。