K-means算法首先从数据样本中随机选取K个点作为初始聚类中心;其次计算各个样本到聚类的距离,把样本归到离它最近的那个聚类中心所在的类;然后计算新形成的每个聚类的数据对象的平均值来得到新的聚类中心;最后重复以上步骤,直到相邻两次的聚类中心几乎没有任何变化,说明样本调整结束,聚类准则函数达到最优。
算法流程图如下所示:
实验代码如下
clc
clear
I=imread('C:\Users\xs\Pictures\1.png');
I=double(I)/255;
subplot(2,3,1),imshow(I),title('原始图像')
for i=2:6
[m,n,~]=size(I);
vec=zeros(m*n,3);
I=double(I);
for j=1:n
for t=1:m
%提取颜色特征
color=I(t,j,:);
%把所有像素点的特征向量组合成一个矩阵
vec((j-1)*m+t,:)=color(:);
end
end
C=vec(randsample(size(vec,1),i),:); %开始随机选i个节点,作为初始聚类中心
Cprev=rand(size(C));
num=0;
while true
num=num+1;
[row,column]=size(vec);
k=size(C,1); %k为分类的个数,也就是有几类
D=zeros(row,k); %D中第一列就代表所有像素点到第一类中心点的欧氏距离
for tt=1:k
D(:,tt)=(vec(:,1)-C(tt,1)).^2;
for j=2:column
D(:,tt)=D(:,tt)+(vec(:,j)-C(tt,j)).^2;
end
%D=sqrt(D); %不加上平方处理不影响结果 而且运算量大大减少
end
[~,locs]=min(D,[],2); %得到所有像素点到哪个类中心的欧氏距离最近
for tt=1:k
C(tt,:)=mean(vec(locs==tt,:),1); %得到新的类中心
end
if (norm(C(:)-Cprev(:))<eps)&&(num~=1) %类中心不再发生改变,停止迭代
break
end
Cprev=C;
end
[m,n,p]=size(I);
F=reshape(C(locs,:),[m,n,p]); %得到新的图像的编码矩阵
subplot(2,3,i);
imshow(F,[]);
title(['聚类个数=',num2str(i)])
end
实验效果如下:
原始图像如下
分为两类的结果如下