Kmeans算法对图片像素点进行聚类

K-means算法首先从数据样本中随机选取K个点作为初始聚类中心;其次计算各个样本到聚类的距离,把样本归到离它最近的那个聚类中心所在的类;然后计算新形成的每个聚类的数据对象的平均值来得到新的聚类中心;最后重复以上步骤,直到相邻两次的聚类中心几乎没有任何变化,说明样本调整结束,聚类准则函数达到最优。

算法流程图如下所示:

实验代码如下

clc

clear

I=imread('C:\Users\xs\Pictures\1.png');

I=double(I)/255;

subplot(2,3,1),imshow(I),title('原始图像')

for i=2:6

    [m,n,~]=size(I);

    vec=zeros(m*n,3);

    I=double(I);

    for j=1:n

        for t=1:m

            %提取颜色特征

            color=I(t,j,:);

            %把所有像素点的特征向量组合成一个矩阵

            vec((j-1)*m+t,:)=color(:);

        end

    end

    C=vec(randsample(size(vec,1),i),:); %开始随机选i个节点,作为初始聚类中心

    Cprev=rand(size(C));

    num=0;

    while true

        num=num+1;

        [row,column]=size(vec);

        k=size(C,1);   %k为分类的个数,也就是有几类

        D=zeros(row,k);  %D中第一列就代表所有像素点到第一类中心点的欧氏距离

        for tt=1:k

            D(:,tt)=(vec(:,1)-C(tt,1)).^2;

            for j=2:column

                D(:,tt)=D(:,tt)+(vec(:,j)-C(tt,j)).^2;

            end

            %D=sqrt(D);       %不加上平方处理不影响结果 而且运算量大大减少

        end

        [~,locs]=min(D,[],2);  %得到所有像素点到哪个类中心的欧氏距离最近

        for tt=1:k

            C(tt,:)=mean(vec(locs==tt,:),1);  %得到新的类中心

        end

        if (norm(C(:)-Cprev(:))<eps)&&(num~=1)  %类中心不再发生改变,停止迭代

            break

        end

        Cprev=C;

    end

    [m,n,p]=size(I);

    F=reshape(C(locs,:),[m,n,p]); %得到新的图像的编码矩阵

    subplot(2,3,i);

    imshow(F,[]);

title(['聚类个数=',num2str(i)])

end

实验效果如下:

原始图像如下

分为两类的结果如下

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wjdamowang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值