代数基本定义

本文介绍了群论中的重要概念,包括一般线性群GLn(k)和特殊线性群SLn(K),它们分别由可逆矩阵和行列式为1的矩阵构成。此外,还探讨了群的阶、周期群、无扭群和混合群的定义,以及子群、中心元素和循环群的概念。这些理论在矩阵运算和抽象代数中有广泛应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一般线性群

G L n ( k ) GL_n(k) GLn(k):数域 F F F上所有 n n n阶可逆矩阵的集合,关于矩阵的乘法作成群,这个群叫做一般线性群,当 n > 1 n>1 n>1时,这个群不是交换群

特殊线性群

S L n ( K ) SL_n(K) SLn(K):数域 F F F上所有行列式等于 1 1 1 n n n 阶矩阵的集合,则 S L n ( F ) SL_n(F) SLn(F) 关于矩阵的乘法作成群,这个群叫做特殊线性群。当 n > 1 n>1 n>1 ,这个群也不是交换群

G G G 的一个元素 a a a,使得
a m = e a^m =e am=e
的最小的正整数 m m m 叫做 a a a 的阶。若是这样的一个 m m m 不存在,我们说, a a a 是无限阶的。
a a a 的阶用符号 ∣ a ∣ |a| a表示

i 次单位根群

U i U_i Ui ( i i i 是正整数)是全体 i i i 次单位根对普通乘法作成的群,这个群叫做 i i i 次单位根群。

周期群,无扭群,混合群

  1. 若群 G G G 中每个元素的阶有限,则称 G G G 为周期群
  2. G G G 中除 e e e 外,其余元素的阶均无限,则称 G G G 为无扭群
  3. 既不是周期群也不是无扭群的群称为混合群

子群

一个群 G G G 的一个非空子集 H H H 叫做 G G G 的一个子群,假如 H H H 对于 G G G 的乘法来说做成一个群,用符号 H ≤ G H\le G HG表示

中心元素,无中心群,中心

  1. G G G 是一个群, G G G 中元素 a a a 如果同 G G G 中每个元素都可交换,则称 a a a 是群 G G G 的一个中心元素。
  2. 若群 G G G 的中心元素只有 e e e 时,称 G G G 为无中心群。
  3. G G G 的全体中心元素作成的集合 C ( G ) C(G) C(G) G G G 的一个子群,成为 G G G 的中心

循环群

< M > <M> <M> 为群 G G G中由子集 M M M 生成的子群,并把 M M M 叫做这个子群的生成系。

循环群,生成元

G = < a > G=<a> G=<a> ,则称 G G G 为由 a a a 生成的一个循环群,并称 a a a G G G 的一个生成元。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值