一般线性群
G L n ( k ) GL_n(k) GLn(k):数域 F F F上所有 n n n阶可逆矩阵的集合,关于矩阵的乘法作成群,这个群叫做一般线性群,当 n > 1 n>1 n>1时,这个群不是交换群
特殊线性群
S L n ( K ) SL_n(K) SLn(K):数域 F F F上所有行列式等于 1 1 1 的 n n n 阶矩阵的集合,则 S L n ( F ) SL_n(F) SLn(F) 关于矩阵的乘法作成群,这个群叫做特殊线性群。当 n > 1 n>1 n>1 ,这个群也不是交换群
阶
群
G
G
G 的一个元素
a
a
a,使得
a
m
=
e
a^m =e
am=e
的最小的正整数
m
m
m 叫做
a
a
a 的阶。若是这样的一个
m
m
m 不存在,我们说,
a
a
a 是无限阶的。
a
a
a 的阶用符号
∣
a
∣
|a|
∣a∣表示
i 次单位根群
设 U i U_i Ui ( i i i 是正整数)是全体 i i i 次单位根对普通乘法作成的群,这个群叫做 i i i 次单位根群。
周期群,无扭群,混合群
- 若群 G G G 中每个元素的阶有限,则称 G G G 为周期群
- 若 G G G 中除 e e e 外,其余元素的阶均无限,则称 G G G 为无扭群
- 既不是周期群也不是无扭群的群称为混合群
子群
一个群 G G G 的一个非空子集 H H H 叫做 G G G 的一个子群,假如 H H H 对于 G G G 的乘法来说做成一个群,用符号 H ≤ G H\le G H≤G表示
中心元素,无中心群,中心
- 设 G G G 是一个群, G G G 中元素 a a a 如果同 G G G 中每个元素都可交换,则称 a a a 是群 G G G 的一个中心元素。
- 若群 G G G 的中心元素只有 e e e 时,称 G G G 为无中心群。
- 群 G G G 的全体中心元素作成的集合 C ( G ) C(G) C(G) 是 G G G 的一个子群,成为 G G G 的中心
循环群
称 < M > <M> <M> 为群 G G G中由子集 M M M 生成的子群,并把 M M M 叫做这个子群的生成系。
循环群,生成元
若 G = < a > G=<a> G=<a> ,则称 G G G 为由 a a a 生成的一个循环群,并称 a a a 为 G G G 的一个生成元。