Deformable Convolution Network

2. Deformable Convolutional Networks

2.1. Deformable Convolution

二维卷积由两个步骤组成,1)在输入特征映射上采用规则网格R采样,2)采样值按w加权求和,网格R定义感受野大小和dilation。
在这里插入图片描述
对于输出feature map上的每个位置p0有,pn为R中的位置。
在这里插入图片描述
在可变形卷积中,规则网格R用以下偏移集进行增广,其中N=|R|:
在这里插入图片描述
公式1变为:
在这里插入图片描述
现在,采样是在不规则的偏移位置pn + ∆pn。由于∆pn通常是小数,所以方程(2)通过双线性插值实现:
在这里插入图片描述
其中p表示任意小数,q枚举feature map x 中的所有空间位置,G()是双线性插值核。
在这里插入图片描述
通过在相同的输入feature map上应用卷积层来获得偏移,卷积核具有于当前卷积层相同的空间分辨率和扩展性,输出偏移field与输入feature map具有相同的空间分辨率。2N channels 数对应于N个2D偏移量(上下偏移和左右偏移,所以为2N)。在训练过程中,同时学习产生特征的卷积核和偏移量,为了学习偏移量,梯度通过双线性运算进行反向传播。

2.2. Deformable RoI Pooling

在这里,整个ROI 被分为k*k个bin,每个bin左上角坐标是p0,p是bin中每个点相对于p0的坐标偏移量,其中nij是bin中像素的数量,其中Δpij是每个bin的偏移量,要注意这个偏移量是针对整个bin的,也就是说bin中每一个点的偏移和该值相同,对于(i, j)-th bin:
在这里插入图片描述
在这里插入图片描述
类似于eq(2),在可变形变中,将offset加到空间binning positions中,eq(5)就变成了:
在这里插入图片描述
在这里插入图片描述
图三演示了如何获得偏移量,第一,ROI池生成feature map,FC层生成归一化的offsets
在这里插入图片描述
然后将其转换为eq(6)中的偏移量∆pij:
在这里插入图片描述
γ是一个预先设定的标量来调节offsets,我们设置为0.1,偏移归一化是使偏移量的learning不改变ROI大小的必要条件。

Position-Sensitive (PS) RoI Pooling是全卷积的。通过一个conv层,所有输入feature map首先被转换为每个对象类的k^2 score maps,如图4的底部分支所示。在不需要区分类别的情况下,这种score maps表示为x(i, j),其中(i,j)枚举所有bins。在这些score maps上执行pooling操作,第(i,j)个bin的输出值是通过与该bin对应的一个分数图xi,j 的求和得到。在图4顶部的分支中,Conv层生成完整的空间分辨率offset field,对于每个ROI,PSROI池被应用于这些字段以获得规范化的偏移量∆pbij,然后这些偏移量以与上述可变形ROI池相同的方式转换为真实的offset。
在这里插入图片描述

2.3. Deformable ConvNets

可变形卷积模块和ROI pooling模块都具有与普通版本相同的输入和输出。因此,它们可以很容易的取代现有CNN中的普通模块。在训练中,这些增加的conv layer 和 fc layer的oofsets的学习被初始化为0,它们的学习率设为β,默认为1,它们通过Eq中的双线性插值运算进行反向传播训练。

为了将变形convnet与最先进的cnn体系结合起来。首先,一个深层卷积网络在整个输入图像上生成feature map,然后,一个浅层网络在整个输入feature map中生成结果。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值