论文阅读笔记(二):USIP:Unsupervised Stable Interest Point Detection from 3D Point Clouds

摘要:

  本文提出了USIP检测器:一种可以在不需要训练数据真值的任意变换的3D点云中检测重复率高、定位准确的关键点的无监督稳定特征点检测器。USIP检测器由一个特征生成网络组成,该网络可以从输入的点云和任意变换后的点云中学习稳定的关键点。本文提供了退化分析和解决方法。我们使用概率倒角距离来最小化从训练点云对中检测到的关键点之间的距离,以提高重复性和定位精度。在包含Lidar、RGB-D和CAD模型的仿真和实际的3D点云数据集上进行了大量的可重复性测试,实验结果表明USIP检测器明显优于当前的现存的手工方法和深度学习3D关键点检测器。
代码:https://github.com/lijx10/USIP

一、USIP检测器

USIP网络结构
  定义点云 X = [ X 0 , . . . , X N ] ∈ R 3 × N \mathbf X=[X_0,...,X_N] \in \mathbb R^{3 \times N} X=[X0,...,XN]R3×N。变换矩阵的集合为{ T 1 , . . . , T L T_1, ..., T_L T1,...,TL},其中 T l ∈ S E ( 3 ) T_l \in SE(3) TlSE(3)被用于产生 L L L个训练点云对 { { X , X ~ 1 } , . . . , { X , X ~ L } } \{\{\mathbf X, \widetilde{\mathbf X}_1\},...,\{\mathbf X, \widetilde{\mathbf X}_L\}\} { { X,X 1},...,{ X,X L}},其中 X ~ l = T l ∘ X ∈ R 3 × N \widetilde{\mathbf X}_l=T_l \circ \mathbf X \in \mathbb R^{3 \times N} X l=TlXR3×N ∘ \circ 表示齐次坐标下的矩阵乘法。使用 { X , X ~ , T } \{\mathbf X, \widetilde{\mathbf X},T\} { X,X ,T}表示一个训练的点云对及其对应的变换关系。在训练过程中, X \mathbf X X X ~ \widetilde{\mathbf X} X 被输送到FPN网络中,输出 M M M个关键点及显著不确定性 { Q = [ Q 1 , . . . , Q M ] , Σ = [ σ 1 , . . . , σ M ] T } \{\mathbf Q=[Q_1,...,Q_M],\Sigma=[\sigma_1,...,\sigma_M]^T\} { Q=[Q1,...,QM],Σ=[σ1,...,σM]T}以及 { Q = [ Q ~ 1 , . . . , Q ~ M ] , Σ = [ σ ~ 1 , . . . , σ ~ M ] T } \{\mathbf Q=[\tilde Q_1,...,\tilde Q_M],\Sigma=[\tilde \sigma_1,...,\tilde \sigma_M]^T\} { Q=[Q~1,...,Q~M],Σ=[σ~1,...,σ~M]T} Q m ∈ R 3 , Q ~ m ∈ R 3 , σ m ∈ R + , σ ~ m ∈ R + Q_m \in \mathbb R^3,\tilde Q_m \in \mathbb R^3,\sigma_m \in \mathbb R^+,\tilde \sigma_m \in \mathbb R^+ QmR3,Q~mR3,σmR+,σ~mR+。为了提高关键点的定位, Q m ∈ Q Q_m \in \mathbf Q QmQ不一定是 X \mathbf X X中的点。同样地, Q ~ m ∈ Q ~ \tilde Q_m \in \widetilde \mathbf Q Q~mQ 也不一定是 X ~ \widetilde \mathbf X X 中的点。
  定义 Q ′ = T − 1 ∘ Q ~ ∈ R 3 × M \mathbf Q^\prime=T^{-1} \circ \widetilde{\mathbf Q} \in \mathbb R^{3 \times M} Q=T1Q R3×M,这样 Q ′ \mathbf Q^\prime Q可以与 Q \mathbf Q Q直接进行比较,并假设显著不确定性不受变换影响,即 Σ ′ = Σ ~ \Sigma^\prime=\tilde\Sigma Σ=Σ~。通过最小化 Q \mathbf Q Q Q ′ \mathbf Q^\prime Q之间的差距,可以实现在任意变换下检测重复度高、定位精度高的3D点云关键点。假设损失函数为: L = L c + λ L p \mathcal L=\mathcal L_c + \lambda \mathcal L_p L=Lc+λLp L c \mathcal L_c Lc是概率倒角损失,目的是最小化 Q \mathbf Q Q Q ′ \mathbf Q^\prime Q对应关系的概率距离。 L p \mathcal L_p Lp是点到点的损失,目的是最小化估计的关键点到点云中最近邻域的距离(因为估计的关键点不一定是点云中存在的点)。 λ \lambda λ是一个平衡损失贡献的参数。

概率倒角损失函数

  倒角距离公式:
∑ i = 1 M min ⁡ Q j ′ ∈ Q ′ ∣ ∣ Q i − Q j ′ ∣ ∣ 2 2 + ∑ j = 1 M

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: USIP(Unified Social Interaction Profiling)是一种用于社交媒体上的关键点提取的算法。其原理如下: 1. 数据预处理:首先,需要对社交媒体上的数据进行预处理,包括文本清洗、分词、词性标注和命名实体识别等操作,以便后续分析。 2. 建立语义网络:将预处理后的数据转化为语义网络,即将文本中的词语作为节点,它们之间的语义关系作为边来构建一个图。 3. 识别主题:通过对语义网络进行聚类和主题建模的方式,识别出社交媒体中的主题。这一步可以使用基于文本聚类的算法,如k-means和层次聚类等。 4. 识别关键点:根据主题和语义网络,识别出社交媒体上的关键点。这一步可以使用一些特定的关键点提取算法,如PageRank和TextRank等。 5. 评估关键点:对提取出的关键点进行评估和筛选,以保证最终的关键点集合具有一定的代表性和准确性。 6. 可视化展示:将提取出的关键点以图表的形式展示出来,让用户更加直观地了解社交媒体上的热点话题和关注点。 总的来说,USIP算法通过将社交媒体数据转化为语义网络,并利用聚类和主题建模的方式,识别出社交媒体上的主题和关键点,从而帮助用户更好地了解社交媒体上的热点话题和关注点。 ### 回答2: USIP(Unsupervised Image Parsing)关键点提取算法是一种无监督的图像解析算法,旨在从图像中提取关键点信息。其原理主要包括以下几个步骤: 1. 首先,对输入的图像进行图像分割。采用图像分割算法将图像分为不同的区域,以便后续处理。这些区域通常由图像的颜色、纹理和边界等特征决定。 2. 接下来,在每个区域中寻找关键点。这里,关键点表示图像中最具代表性和显著性的点。关键点可以是物体的边缘、角点或纹理变化等。 3. 在每个区域中计算关键点的重要性得分。重要性得分可以通过计算关键点周围的梯度、颜色和纹理等来获得。得分高的关键点通常反映了图像中最具辨识度的特征。 4. 对关键点进行聚类。根据关键点的特征相似性,使用聚类算法将关键点分为不同的组。 5. 最后,根据每个组的重要性得分和关键点的空间位置,生成图像的关键点提取结果。这些关键点可以用于图像识别、目标跟踪和图像编辑等应用领域。 总之,USIP关键点提取算法通过无监督的方式对图像进行解析,找到图像中最具代表性和显著性的关键点。通过对关键点的特征分析和聚类,提取出适用于不同应用场景的图像特征。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值