常微分方程----线性无关与朗斯基行列式

1.线性无关

线性无关是线性代数中的一个基本概念,它描述了一组向量之间的关系。具体来说,如果一组向量中的任何一个向量不能被其他向量的线性组合所表示,那么这组向量就是线性无关的。换句话说,如果方程eq?a1v1+a2v2+a3v3+...+anvn%3D0 的唯一解是eq?a1%3Da2%3Da3%3D...%3Dan%3D0,那么向量 eq?v1%2Cv2%2Cv3...vn​ 就是线性无关的。

2.朗斯基行列式

朗斯基行列式((Wronskian determinant),也称为朗斯基行列式或朗斯基-罗内行列式,是用于判断一组函数是否线性无关的工具。对于一组函数 eq?f1%28x%29%2Cf2%28x%29%2Cf3%28x%29...fn%28x%29,它们的朗斯基行列式定义为:

c61ab4349bee4dde9c3a0e15f42e8359.png

其中 eq?f_%7Bi%7D%5E%7Bk%7D%28x%29 表示函数 eq?f_%7Bi%7D%5E%7B%7D%28x%29 的第 k 阶导数。

证明:


如果eq?f1%2C....fn在一个区间 [a,b] 上线性相关,则存在不全为零的系数eq?c1%2Cc2...cn,使得对区间 [a,b] 上的任意t,都有:

eq?c_1f_1%28t%29+c_2f_2%28t%29+c_3f_3%28t%29+...+c_nf_n%28t%29%3D0

因为“微分”是线性算子,所以这个等式可以“延伸”到n-1阶导数。故有以下方程组:

9bf1e228ae5d413bbb44dd1940081aa1.png

eq?c1%2Cc2...cn看做变量则上式变为一个n元齐次线性方程组,由于这个方程有非零解,系数矩阵的行列式W(f1, ..., fn)= 0。


3.朗斯基行列式的使用

1.考虑三个函数:1、x和x^2,在任意一个区间上,他们的朗斯基行列式是:

1c3fa1cd0b9d46c2aac764d4d32cd1f7.png

不等于零,因此,这三个函数在任一个区间上都是线性无关的。

4.朗斯基行列式与二阶微分方程

我们对于eq?x%27%27+p%28t%29x%27+q%28t%29x%3D0

  1. 基本解组的存在性:对于二阶齐次线性微分方程,如果存在两个线性无关的解 eq?x1%28x%29eq?x2%28x%29,则它们的线性组合 eq?y%3Dc_1x_1%28x%29+c_2x_2%28x%29可以构成方程的通解。这里eq?x1%28x%29eq?x2%28x%29 被称为基本解组 。

  2. 线性无关的判定:函数eq?x1%28x%29eq?x2%28x%29 是二阶齐次线性微分方程在区间 eq?I 上的两个解,它们的朗斯基行列式为:eq?W%28x_1%2Cx_2%29%28t%29%3Dce%5E%7B-%5Cint%20p%28t%29dt%7D。这个公式表明,如果eq?x1%28x%29eq?x2%28x%29 的朗斯基行列式在某点不为零,则这两个解在区间 (a,b) 上线性无关 。

也就是说 :

如果朗斯基行列式等于0,说明两个解是线性相关的

如果W(t)不等于0,说明两个解是线性无关的,且两个解叫做方程的两个基本解(fundamental solution)

5.例题

Example:Prove that eq?e%5Et and eq?sint can not be two solutions of a equationeq?x%27%27+p%28t%29x%27+q%28t%29x%3D0.

proof:

eq?W%28e%5Et%2Csint%29%3D%5Cbegin%7Bvmatrix%7D%20e%5Et%20%26sint%20%5C%5C%20e%5Et%26cost%20%5Cend%7Bvmatrix%7D%3De%5Et%28cost-sint%29%3D%5Csqrt%7B2%7De%5Etcos%28t+%5Cfrac%7B%5Cpi%20%7D%7B4%7D%29

eq?W%28e%5Et%2Csint%29%7C_%7Bt%3D%5Cfrac%7B%5Cpi%20%7D%7B4%7D%7D%3D0%2CW%28e%5Et%2Csint%29%7C_%7Bt%3D0%7D%3D0

Hence,eq?e%5Et and eq?sint not be two solution of eq?x%27%27+p%28t%29x%27+q%28t%29x%3D0

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值