线性方程组(七)- 线性无关

小结

  1. 向量组的线性无关
  2. 矩阵各列的线性无关
  3. 一个或两个向量的集合的线性无关
  4. 两个或多个向量的集合的线性无关

向量组的线性无关

R n \mathbb{R}^{n} Rn中一组向量{ v 1 , ⋯   , v p \boldsymbol{v_1,\cdots,v_p} v1,,vp}称为线性无关的,若向量方程仅有平凡解。向量组(集){ v 1 , ⋯   , v p \boldsymbol{v_1,\cdots,v_p} v1,,vp}称为线性相关的,若存在不全为零的权 c 1 , ⋯   , c p c_1,\cdots,c_p c1,,cp,使 c 1 v 1 + ⋯ + c p v p = 0 c_1\boldsymbol{v_1}+\cdots+c_p\boldsymbol{v_p}=\boldsymbol{0} c1v1++cpvp=0方程成立。方程 c 1 v 1 + ⋯ + c p v p = 0 c_1\boldsymbol{v_1}+\cdots+c_p\boldsymbol{v_p}=\boldsymbol{0} c1v1++cpvp=0称为向量 v 1 , ⋯   , v p \boldsymbol{v_1,\cdots,v_p} v1,,vp的一个线性相关关系,其中权不全为零。一组向量线性相关当且仅当它不是线性无关的。为简单起见,我们也可说 v 1 , ⋯   , v p \boldsymbol{v_1,\cdots,v_p} v1,,vp线性相关,意思是向量组(集){ v 1 , ⋯   , v p \boldsymbol{v_1,\cdots,v_p} v1,,vp}是线性相关组。

v 1 = [ 1 2 3 ] , v 2 = [ 4 5 6 ] , v 3 = [ 2 1 0 ] \boldsymbol{v_1}=\begin{bmatrix}1 \\ 2 \\ 3\end{bmatrix},\boldsymbol{v_2}=\begin{bmatrix}4 \\ 5 \\ 6\end{bmatrix},\boldsymbol{v_3}=\begin{bmatrix}2 \\ 1 \\ 0\end{bmatrix} v1=123v2=456v3=210。确定向量组{ v 1 , v 2 , v 3 \boldsymbol{v_1,v_2,v_3} v1,v2,v3}是否线性相关的。若线性相关,求出 v 1 , v 2 , v 3 \boldsymbol{v_1,v_2,v_3} v1,v2,v3的一个线性相关关系。
解:行化简相应的增广矩阵:
[ 1 4 2 0 2 5 1 0 3 6 0 0 ] \begin{bmatrix} 1 & 4 & 2 & 0 \\ 2 & 5 & 1 & 0 \\ 3 & 6 & 0 & 0 \\ \end{bmatrix} 123456210000 [ 1 4 2 0 0 − 3 − 3 0 0 − 6 − 6 0 ] \begin{bmatrix} 1 & 4 & 2 & 0 \\ 0 & -3 & -3 & 0 \\ 0 & -6 & -6 & 0 \\ \end{bmatrix} 100436236000 [ 1 4 2 0 0 − 3 − 3 0 0 0 0 0 ] \begin{bmatrix} 1 & 4 & 2 & 0 \\ 0 & -3 & -3 & 0 \\ 0 & 0 & 0 & 0 \\ \end{bmatrix} 100430230000
显然, x 1 x_1 x1 x 2 x_2 x2为基本变量, x 3 x_3 x3为自由变量。 x 3 x_3 x3的每一个非零值确定一组非平凡解。因此,向量组{
v 1 , v 2 , v 3 \boldsymbol{v_1,v_2,v_3} v1,v2,v3}是线性相关的。
继续行化简增广矩阵并写出对应方程组的通解 :
[ 1 0 − 2 0 0 1 1 0 0 0 0 0 ] { x 1 = 2 x 3 x 2 = − x 3 0 为 自 由 变 量 \begin{bmatrix}1 & 0 & -2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0\end{bmatrix}\quad \begin{cases}x_1 = 2x_3 \\ x_2 = -x_3 \\ 0为自由变量\end{cases} 100010210000x1=2x3x2=x30
选择 x 3 x_3 x3的一个非零值,比如 x 3 = 5 x_3=5 x3=5,则 x 1 = 10 x_1=10 x1=10 x 2 = − 5 x_2=-5 x2=5
10 v 1 − 5 v 2 + 5 v 3 = 0 10\boldsymbol{v_1}-5\boldsymbol{v_2}+5\boldsymbol{v_3}=\boldsymbol{0} 10v15v2+5v3=0就是 v 1 , v 2 , v 3 \boldsymbol{v_1,v_2,v_3} v1,v2,v3的一个线性相关关系。

矩阵各列的线性无关

设我们不考虑向量组而是考虑矩阵 A = [ a 1 ⋯ a n ] \boldsymbol{A}=\begin{bmatrix}\boldsymbol{a_1} & \cdots &\boldsymbol{a_n}\end{bmatrix} A=[a1an],矩阵方程 A x = 0 \boldsymbol{Ax}=\boldsymbol{0} Ax=0可以写成 x 1 a 1 + ⋯ + x n a n = 0 x_1\boldsymbol{a_1}+\cdots+x_n\boldsymbol{a_n}=\boldsymbol{0} x1a1++xnan=0
A \boldsymbol{A} A的各列之间的每一个线性相关关系对应于方程 A x = 0 \boldsymbol{Ax}=\boldsymbol{0} Ax=0的一个非平凡解。矩阵 A \boldsymbol{A} A的各列线性无关,当且仅当方程 A x = 0 \boldsymbol{Ax}=\boldsymbol{0} Ax=0仅有平凡解。

确定矩阵 A = [ 0 1 4 1 2 − 1 5 8 0 ] \boldsymbol{A}=\begin{bmatrix} 0 & 1 & 4 \\ 1 & 2 & -1 \\ 5 & 8 & 0\end{bmatrix} A=015128410的各列是否线性无关。
解:为研究 A x = 0 \boldsymbol{Ax}=\boldsymbol{0} Ax=0,把增广矩阵进行行化简:
[ 0 1 4 0 1 2 − 1 0 5 8 0 0 ] \begin{bmatrix} 0 & 1 & 4 & 0 \\ 1 & 2 & -1 & 0 \\ 5 & 8 & 0 & 0 \\ \end{bmatrix} 015128410000 [ 1 2 − 1 0 0 1 4 0 0 2 − 5 0 ] \begin{bmatrix} 1 & 2 & -1 & 0 \\ 0 & 1 & 4 & 0 \\ 0 & 2 & -5 & 0 \\ \end{bmatrix} 100212145000 [ 1 2 − 1 0 0 1 4 0 0 0 13 0 ] \begin{bmatrix} 1 & 2 & -1 & 0 \\ 0 & 1 & 4 & 0 \\ 0 & 0 & 13 & 0 \\ \end{bmatrix} 1002101413000
显然, x 1 x_1 x1 x 2 x_2 x2 x 3 x_3 x3为基本变量,无自由变量。因此方程 A x = 0 \boldsymbol{Ax}=\boldsymbol{0} Ax=0仅有平凡解。 A \boldsymbol{A} A的各列是线性无关的。

一个或两个向量的集合的线性无关

仅含一个向量(比如说 v \boldsymbol{v} v)的集合线性无关当且仅当 v \boldsymbol{v} v不是零向量。这是因为当 v ≠ 0 \boldsymbol{v} \neq 0 v̸=0时向量方程 x 1 v = 0 x_1\boldsymbol{v}=\boldsymbol{0} x1v=0仅有平凡解。零向量时线性相关的,因为 x 1 0 = 0 x_1\boldsymbol{0}=\boldsymbol{0} x10=0有许多非平凡解。

确定下列向量组是否线性无关。

  1. v 1 = [ 3 1 ] \boldsymbol{v_1}=\begin{bmatrix}3 \\ 1\end{bmatrix} v1=[31] v 2 = [ 6 2 ] \boldsymbol{v_2}=\begin{bmatrix}6 \\ 2\end{bmatrix} v2=[62]
  2. v 1 = [ 3 2 ] \boldsymbol{v_1}=\begin{bmatrix}3 \\ 2\end{bmatrix} v1=[32] v 2 = [ 6 2 ] \boldsymbol{v_2}=\begin{bmatrix}6 \\ 2\end{bmatrix} v2=[62]

解:

  1. 注意 v 2 \boldsymbol{v_2} v2 v 1 \boldsymbol{v_1} v1的倍数,即 v 2 = 2 v 1 \boldsymbol{v_2}=2\boldsymbol{v_1} v2=2v1。因此 − 2 v 1 + v 2 = 0 -2\boldsymbol{v_1} + \boldsymbol{v_2} = \boldsymbol{0} 2v1+v2=0,这表明{ v 1 , v 2 \boldsymbol{v_1},\boldsymbol{v_2} v1v2}线性相关。
  2. c c c d d d满足 c v 1 + d v 2 = 0 c\boldsymbol{v_1}+d\boldsymbol{v_2}=\boldsymbol{0} cv1+dv2=0。若 c ≠ 0 c \neq 0 c̸=0,则可用 v 2 \boldsymbol{v_2} v2表示 v 1 \boldsymbol{v_1} v1,即 v 1 = ( − d c ) v 2 \boldsymbol{v_1}=(-\frac{d}{c})\boldsymbol{v_2} v1=(cd)v2。这是不可能的,因为 v 1 \boldsymbol{v_1} v1不是 v 2 \boldsymbol{v_2} v2的倍数。故 c c c必是零。类似地 d d d也必是零。这表明{ v 1 , v 2 \boldsymbol{v_1},\boldsymbol{v_2} v1v2}是线性无关组。

两个向量的集合{ v 1 , v 2 \boldsymbol{v_1},\boldsymbol{v_2} v1v2}线性相关,当且仅当其中一个向量是两一个向量的倍数。这个集合线性无关,当且仅当其中任一个向量不是另一个向量的倍数。

从几何意义上看,两个线性相关,当且仅当它们落在通过原点的同一条直线上。

两个或更多个向量的集合的线性无关

定理 两个或更多个向量的集合 S = \boldsymbol{S}= S={ v 1 , ⋯   , v 2 \boldsymbol{v_1}, \cdots,\boldsymbol{v_2} v1,,v2}线性相关,当且仅当 S \boldsymbol{S} S中至少有一个向量是其他向量的线性组合。事实上,若 S \boldsymbol{S} S线性相关,且 v 1 ≠ 0 \boldsymbol{v_1} \neq 0 v1̸=0,则某个 v j ( j > 1 ) \boldsymbol{v_j}(j>1) vj(j>1)是它前面向量 v 1 , ⋯   , v j − 1 \boldsymbol{v_1}, \cdots,\boldsymbol{v_{j-1}} v1,,vj1的线性组合。

必要性:若 S \boldsymbol{S} S中某个 v j \boldsymbol{v_j} vj是其他向量的线性组合,那么把方程两边剪去 v j \boldsymbol{v_j} vj就产生一个线性相关关系,其中 v j \boldsymbol{v_j} vj的权为(-1)。
如,若 v 1 = c 2 v 2 + c 3 v 3 \boldsymbol{v_1}=c_2\boldsymbol{v_2}+c_3\boldsymbol{v_3} v1=c2v2+c3v3,那么 0 = − 1 v 1 + c 2 v 2 + c 3 v 3 + 0 v 4 + ⋯ + 0 v p \boldsymbol{0}=-1\boldsymbol{v_1}+c_2\boldsymbol{v_2}+c_3\boldsymbol{v_3}+0\boldsymbol{v_4}+\cdots+0\boldsymbol{v_p} 0=1v1+c2v2+c3v3+0v4++0vp

充要性:设 S \boldsymbol{S} S线性相关。
v 1 = 0 \boldsymbol{v_1}=\boldsymbol{0} v1=0,则它是 S \boldsymbol{S} S中其他向量的一个线性组合。即 0 = c 2 v 2 + ⋯ + c p v p \boldsymbol{0}=c_2\boldsymbol{v_2}+\cdots+c_p\boldsymbol{v_p} 0=c2v2++cpvp
v 1 ≠ 0 \boldsymbol{v_1} \neq \boldsymbol{0} v1̸=0,存在 c 1 , ⋯   , c p c_1,\cdots,c_p c1,,cp不全为0,使得 c 1 v 1 + ⋯ + c p v p = 0 c_1\boldsymbol{v_1}+\cdots+c_p\boldsymbol{v_p}=\boldsymbol{0} c1v1++cpvp=0
j j j是使 c j ≠ 0 c_j \neq 0 cj̸=0的最大下标。若 j = 1 j=1 j=1,则 c 1 v 1 = 0 c_1\boldsymbol{v_1}=\boldsymbol{0} c1v1=0。这是不可能的,因为 v 1 ≠ 0 \boldsymbol{v_1} \neq \boldsymbol{0} v1̸=0。故j > 1。即 c 1 v 1 + ⋯ + c j v j + 0 v j + 1 + ⋯ + 0 v p = 0 c_1\boldsymbol{v_1}+\cdots+c_j\boldsymbol{v_j}+0\boldsymbol{v_{j+1}}+\cdots+0\boldsymbol{v_p}=\boldsymbol{0} c1v1++cjvj+0vj+1++0vp=0,可得 c j v j = − c 1 v 1 − ⋯ − c j − 1 v j − 1 c_j\boldsymbol{v_j}=-c_1\boldsymbol{v_1}-\cdots-c_{j-1}\boldsymbol{v_{j-1}} cjvj=c1v1cj1vj1

定理 若一个向量组的向量个数超过每个向量的元素个数,那么这个向量组线性相关。就是说, R n \mathbb{R^{n}} Rn中任意向量组{ v 1 , ⋯   , v p \boldsymbol{v_1},\cdots,\boldsymbol{v_p} v1,,vp}当 p > n p>n p>n线性相关。
因为未知量比方程多,必定有自由变量。

定理 若 R n \mathbb{R^{n}} Rn中向量组 S = \boldsymbol{S}= S={ v 1 , ⋯   , v p \boldsymbol{v_1,\cdots,\boldsymbol{v_p}} v1,,vp}包含零向量,则它线性相关。
把这些向量重新编号,我们可设 v 1 = 0 \boldsymbol{v_1}=\boldsymbol{0} v1=0,于是方程 1 v 1 + 0 v 2 + ⋯ + 0 v p = 0 1\boldsymbol{v_1}+0\boldsymbol{v_2}+\cdots+0\boldsymbol{v_p}=\boldsymbol{0} 1v1+0v2++0vp=0

  • 3
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值