ODE常微分方程常用解法

一阶ODE


一阶线性:

 \frac{dy}{dx}=P(x)y+Q(x)  y_0=y(x_0)

        其唯一解为:y=e^{\int_{x_0}^xP(u)du}[y_0+\int_{x_0}^xQ(u)e^{-\int_{x_0}^uP(s)ds}du]


伯努利微分方程:

  \frac{dy}{dx}=P(x)y+Q(x)y^n, n\neq0,1          

        令z=y^{1-n} ,从而     \frac{dz}{dx}=(1-n)P(x)z+(1-n)Q(x).       

        特别地,n=2,则 \frac{dz}{dx}=-P(x)z-Q(x) , z=\frac{1}{y} 


第一类Abel方程

\frac{dy}{dx}=f_3(x)y^3+f_2(x)y^2+f_1(x)y+f_0(x)

        ​​​​​​​若f_3=0,称为Riccati方程. 

第二类Abel方程

\frac{dy}{dx}=\frac{f_3(x)y^3+f_2(x)y^2+f_1(x)y+f_0(x)}{a(x)+b(x)y}​​​​​​​


高阶ODE

线性微分方程一般理论


        n阶非齐次线性微分方程:  \frac{d^nx}{dt^n}+a_1(t)\frac{d^{n-1}x}{dt^{n-1}}+...+a_{n-1}\frac{dx}{dt}+a_n(t)x=f(t)

        n阶非齐次线性微分方程:   \frac{d^nx}{dt^n}+a_1(t)\frac{d^{n-1}x}{dt^{n-1}}+...+a_{n-1}\frac{dx}{dt}+a_n(t)x=0

        n 阶齐次线性微分方程一定存在n 个线性无关的解(基本解组),其通解可表示为其线性组合.

        n 阶非齐次线性微分方程的通解可表示为一特解加基本解组的线性组合.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值