Origin: 类别图-多因子组柱状图-分组柱状图

本文介绍如何使用Origin软件绘制多因子组柱状图,包括数据输入格式、图形绘制步骤、参数细节调整等内容,帮助读者掌握绘制技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本期目标:
在这里插入图片描述
接下来,正文开始:
1,如图1,数据包含两个分组列(X轴),A列表示小分组,B列表示大分组,C/D/E三列表示三个因子列,作为Y轴。同样的方式,可以在E轴后侧依次添加数据增加四,五,六等多个因子。
在这里插入图片描述
图1 数据输入格式

2,按照上图方式输入数据后,选中数据后,点击菜单栏——绘图——类别——多因子组柱状图-索引数据进行图形绘制,图2。接下来按照图3方式对数据的分组情况进行设置,注意:此处需先选择大分组(即B列),再选择小分组(即A列)。
在这里插入图片描述
图2 多因子组柱状图-索引数据的绘制方式
在这里插入图片描述
图3 数据分组条件设置

3,按图2与图3方式设置好参数后,图形绘制结果如图4所示。
在这里插入图片描述
图4 多因子组分组柱状图初步图形

4, 接下来,对图形参数细节进行调整。
a: 按照三个因子对柱状图进行颜色设置;
b: 图例更新为三个因子;

a: 在任意柱子上双击调出绘图属性界面(图5),可知此时为从属模式,将其更改为独立模式后,即可依次单击左侧Layer1下的三个因素,并在图案界面下更改颜色(图6)。
在这里插入图片描述
图5 绘图属性界面
在这里插入图片描述
图6 分组(多因子)柱子的颜色修改
b: 按上述方式分别对“condition1/condition2/condition3”修改颜色之后,点击确定,得到图7。但是右侧图例的显示明显不对,此时,依次点击菜单栏——图——图例——重构图例(图8),即可得到对应的以三个因子命名的图例,图9。
注:也可以通过更新图例的方式,其中,图例的自动译码模式那一栏选择多因子组名称在的那一行即可,此处为“长名称”,参见图1。
在这里插入图片描述
图7 多因子柱状图颜色修改后的图形
在这里插入图片描述
图8 重构图例
在这里插入图片描述
图9 更新图例后的多因子分组柱状图
5,接下来对图形细节进行修改,包括坐标轴,字体,边框等,详细内容可参考:Origin: 常见图形参数设置(汇总篇)
这里需要注意的是,当分组过多,或者名字过长时,可能会出现名字显示不全的情况,如图10。 给15/16/17均修改为Name15/Name16/Name17后,就出现了掩盖的情况。
在这里插入图片描述
图10 坐标轴显示不全
修改方式包括:
a: 在空白部分双击,调出页面属性界面,修改宽度(图11),但是这种方式的效果效果不明显,后面三个名字仍旧难完全显示出来;
在这里插入图片描述
图11 修改坐标轴显示——调整页面属性
b: 直接单击图形,在出现边框时,按住右侧边框,拉长图形,但个人认为这种方式和上面的方法类似;
在这里插入图片描述
图12 修改坐标轴显示——直接拉长图形
c: 双击X坐标轴,调出X坐标轴进行刻度线标签的修改,包括显示——格式——表格式刻度标签。同样方式可对下1下2分别进行调整。
显示:此处可以设置X坐标轴的名称(本例子中为化合物名称);
格式:可以通过修改字体大小,及调整旋转角度使X坐标轴得到合适程度的显示;
表格式刻度标签:可对大分组与小分组的表格显示情况进行修改,可自行尝试。
在这里插入图片描述
图13 修改坐标轴显示——修改坐标抽参数
通过第三种方式进行适当的参数调整后,如图14所示。
在这里插入图片描述
图14 修改坐标轴参数后的图形
6,个性化细节调整
a: 调整组间间距、显示标签
双击柱子调出“绘图细节——绘图属性”,可在间距界面调整柱状/条形间距,在标签界面显示并调整柱状标签的显示状态。
在这里插入图片描述
图15 柱状图组件间距及标签的参数修改
b: 添加网格线
双击坐标轴,在“网格”界面依次设置网格线的颜色,样式,粗细等,参数设置如图16。
在这里插入图片描述
图16 网格参数的设置
7,按照以上所有参数进行细节调整,最终结果如图17。
在这里插入图片描述
图17 最终图形结果

其他的一些参考教程:
Origin多因子柱状图教程(二)
origin图表坐标轴下的分组表格是怎么添加的?

### 二维前缀和算法在瓦片案生成或处理中的应用 #### 定义与基本原理 二维前缀和是一种用于快速求解矩形区域内元素总和的技术。对于给定的一个矩阵 `A`,可以预先计算一个新的矩阵 `prefixSum`,其中每个元素 `(i,j)` 表示从原点 `(0,0)` 到当前坐标的子矩阵内所有数值之和。 通过这种方式,在后续查询任意指定区域内的元素累积值时只需常数时间复杂度 O(1),因为只需要访问四个预处理过的节点即可完成加减运算得出结果[^1]。 #### 应用场景分析 当涉及到像地服务这样的应用场景时——特别是采用分层切片机制的地系统(如微软 Bing 地),这种技术能够显著提升性能效率: - **加速渲染过程**:利用二维前缀和可以在瞬间获取特定范围内的数据汇总信息,从而加快像合成速度; - **简化碰撞检测逻辑**:游戏开发等领域经常需要用到对象间相互作用判断,借助此方法可迅速定位目标区间并作出响应; - **优化路径规划算法**:无论是最短路还是其他形式的空间搜索问题,都能受益于高效的数据检索能力所带来的优势[^2]。 #### 实现案例展示 下面给出一段 Python 代码片段作为例子说明如何基于上述理论框架构建实际解决方案: ```python def build_prefix_sum(matrix): rows = len(matrix) cols = len(matrix[0]) if matrix else 0 prefix_sum = [[0]*(cols+1) for _ in range(rows+1)] for i in range(1,rows+1): for j in range(1,cols+1): prefix_sum[i][j]=matrix[i-1][j-1]+\ prefix_sum[i-1][j]+ \ prefix_sum[i][j-1]- \ prefix_sum[i-1][j-1] return prefix_sum def query_submatrix_sum(prefix_sum,x1,y1,x2,y2): """Query sum of elements within sub-matrix defined by top-left (x1,y1), bottom-right(x2,y2).""" return prefix_sum[x2+1][y2+1]-prefix_sum[x1][y2+1]-prefix_sum[x2+1][y1]+prefix_sum[x1][y1] # Example usage: input_matrix=[[3,0,1,4],[2,8,7,5],[4,6,9,1]] ps=build_prefix_sum(input_matrix) print(query_submatrix_sum(ps,1,1,2,2)) # Output should be 30 which is the sum inside this area. ```
评论 22
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值