梯度消失的问题

梯度消失的问题

1.1什么是梯度消失

有人在CIFAR10这个数据集上面做了一个实验,是不是卷积层越多越好,结果发现并不是如此。在层数增加之后表现并没有有效的变好。这其实就是触发了梯度消失的问题。
在这里插入图片描述
因为每一层计算的梯度最终都会乘算到一起,这个数值在最后的时候就会越来越小,乘的层数多了,自然而然就会变得越来越小。底层的网络的梯度会变得特别小,很难得到有效的训练,所以整体的准确度不高。

1.2这个问题如何解决—深度残差网络

我们可以使用如下的情况来进行解决,将一个没有经过层处理的x直接传下去。
在这里插入图片描述
这样到底能达到一个怎样的结果呢?其实得到就是下面这个结果:在这里插入图片描述
每次计算梯度的时候,因为我们加了一个x那么永远都有一个+1的存在,所以这样我们永远也不会出现梯度乘起来为0的情况了。

2.1实现

这里注意一点,想要两个可以加和,那么必须存在这样的一个情况就是,传递下来的x要和经过计算的y的(branch,channel,height,weight)是完全相同的才可以,所以我们一定要注意不能发生变形。

import numpy
import torch
from torchvision import functional as F
class ResidualBlocK(torch.nn.Module):
    def __init__(self,input_channel):
        super(ResidualBlocK,self).__init__()
        #这里我们注意我们之前使用的是矩阵合并,合并的时候是除了合并的那一个维度之外所有维度都需要相等。
        #这里我们是使用矩阵加和,所以两者的所有维度都必须是相等的,所以输入和输出的通道必须是相同的。
        self.conv1=torch.nn.Conv2d(input_channel,input_channel,kernel_size=3,padding=1)
        self.conv2=torch.nn.Conv2d(input_channel,input_channel,kernel_size=3,padding=1)

        self.input_channel=input_channel

    def forward(x):
        y=F.relu(conv1(x))
        y=conv2(y)
        return F.relu(x)
        #这里我们注意一个小的细节,relu的位置我们要带着x一起relu才可以。

class Net(torch.nn.Module):
    def __init__(self,channel):
        super(Net,self).__init__()
        self.conv1=torch.nn.Conv2d(channel,16,kernel_size=5)
        self.conv2=torch.nn.Conv2d(16,32,kernel_size=5)

        self.resi1=ResidualBlocK(16)
        self.resi2=ResidualBlocK(32)

        self.maxpool=torch.nn.MaxPool2d(2)

        self.fullconnect=torch.nn.Linear(256,10)
        #同样这个256也是算出来的,但是我们为了稳妥起见,还是自己构造一个数据集来新进行测试一下。逐步测试,每一次逐步的渐增。
        #最好是使用增量式开发来进行开发。

    def forward(x):
        input_num=x.size(0)
        x=self.maxpool(F.relu(self.conv1(x)))
        x=self.resi1(x)
        x=self.maxpool(F.relu(self.conv2(x)))
        x=self.resi2(x)
        x=x.view(input_num,-1)
        x=self.fullconnect(x)
    

2.2更多的工作

大家可以参考:
论文:Identity Mappings in Deep Residual Networks
中文翻译:https://blog.csdn.net/cdknight_happy/article/details/78994071

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CUHK-SZ-relu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值