(矩阵Part2):矩阵进阶

本文详细介绍了矩阵的基本运算,包括单位矩阵、数量矩阵及其性质,以及矩阵乘法的规则。进一步讨论了可逆矩阵的定义、性质和求逆方法,强调了初等变换在求逆过程中的应用。同时,阐述了矩阵对角化、迹、特征值和特征向量的概念,特别是实对称矩阵的对角化和正定性的判断标准。最后,探讨了二次型和正定矩阵的关系,强调了非退化线性替换在二次型标准化中的作用。
摘要由CSDN通过智能技术生成

(矩阵Part2):矩阵进阶

一.矩阵的基本运算

给出参考:矩阵的基本运算_palawind-CSDN博客_矩阵运算

1.1定义单位矩阵


主 对 角 线 元 素 都 是 1 , 其 余 元 素 为 0 的 n 级 矩 阵 称 为 n 级 单 位 矩 阵 , 几 位 I n , 简 记 为 I , 如 果 A 是 n 级 矩 阵 , 则 I A = A I = A 一 部 分 书 中 也 记 作 E 主对角线元素都是1,其余元素为0的n级矩阵称为n级单位矩阵,几位I_n,\\简记为I,如果A是n级矩阵,则IA=AI=A\\一部分书中也记作E 线10nnInIAnIA=AI=AE

1.2定义数量矩阵


定 义 k I 为 数 量 矩 阵 其 性 质 为 , 一 般 的 矩 阵 乘 法 是 不 满 足 交 换 律 的 , 但 是 数 量 矩 阵 与 任 何 矩 阵 可 交 换 。 定义kI为数量矩阵\\其性质为,一般的矩阵乘法是不满足交换律的,但是数量矩阵与任何矩阵可交换。 kI

1.3性质

( 1 ) 从 B A = 0 不 能 推 导 出 B = 0 或 者 A = 0 e g . A = ( 0 1 0 0 )   B = ( 0 0 0 1 ) ( 2 ) ( A + B ) T = A T + B T ( 3 ) ( k A ) T = k A T ( 4 ) ( A B ) T = B T A T (1)从BA=0不能推导出B=0或者A=0\\eg.A=\begin{pmatrix}0&1\\0&0\\\end{pmatrix}\ B=\begin{pmatrix}0&0\\0&1\\\end{pmatrix}\\(2)(A+B)^T=A^T+B^T \\(3)(kA)^T=kA^T\\(4)(AB)^T=B^TA^T 1BA=0B=0A=0eg.A=(0010) B=(0001)2(A+B)T=AT+BT3(kA)T=kAT4(AB)T=BTAT

1.4分块矩阵乘法

在这里插入图片描述

1.5常见矩阵定义

给出参考:数学中的各种矩阵大总结_白马负金羁-CSDN博客_常见矩阵的十种类型

除此之外还包括:

1.基本矩阵
	只有一个元素为1,其余元素均为0的矩阵。
2.初等矩阵
	由单位矩阵经过一个初等变换得到的而矩阵称为初等矩阵。用初等矩阵左(右)乘一个矩阵A,就相当于对A做了一次相应的初等行(列)变换。
3.对称矩阵
4.反对称矩阵

1.6矩阵乘法的性质

( 1 ) 设 A = ( a i j ) s n , B = ( b i j ) m n , 则 r a n k ( A B ) ≤ m i n { r a n k ( A ) , r a n k ( B ) } (1)设A=(a_{ij})_{sn},B=(b_{ij})_{mn},则rank(AB)≤min\{rank(A),rank(B)\} 1A=(aij)sn,B=(bij)mn,rank(AB)min{rank(A),rank(B)}

​ 从几何意义的角度讲,矩阵乘法相当于是空间变换,不可能得到维度高于两个矩阵的信息。

​ 另一方面AB 一意味着 A 的列向量重新进行了线性组合,并将 n 维的 A 向量映射到了 M

上,即 AB 可以由 A 线性表出,所以 AB 的秩<=A**的秩。
( 2 ) 设 A = ( a i j ) s n 则 r a n k ( A T A ) = r a n k ( A A T ) = r a n k ( A ) (2)设A=(a_{ij})_{sn}则rank(A^TA)=rank(AA^T)=rank(A) 2A=(aij)snrank(ATA)=rank(AAT)=rank(A)

	用A'表示A的转置,要证明r(A'A)=r(A),只需证明方程组AX=0和A'AX=0同解。如果AX=0,两边分别左乘A',得A'AX=0,这说明方程组AX=0的解都是方程组A'AX=0的解;另一方面,如果A'AX=0,两边分别左乘X',得X'A'AX=0,即(AX)'AX=0,令Y=AX,则Y'Y=0,注意Y=AX为n维列向量,因此可设Y=(y1,y2,,,yn)',则Y'Y=y1^2+...+yn^2=0,因此y1=...yn=0,即Y=AX=0,这说明方程组A'AX=0的解都是方程组AX=0的解,综上我们证明了AX=0和A'AX=0同解,因此r(A'A)=r(A)。

( 3 ) 设 A , B 都 是 n 级 矩 阵 , 则 ∣ A B ∣ = ∣ A ∣ ∣ B ∣ (3)设A,B都是n级矩阵,则|AB|=|A||B| 3ABnAB=AB

给出参考:det(AB)=det(A)det(B)有简单证法吗? - 知乎 (zhihu.com)

二.可逆矩阵

2.1可逆矩阵的定义

在这里插入图片描述

数域K上,n级矩阵A可逆的充要条件为:
1.|A|不等于0;
2.A满秩,即,rank(A)=n;
3.A的行向量组线性无关;
4.A的列向量组线性无关;
5.A可以表示成一些初等矩阵的乘机;

对条件1给出证明:首先给出伴随矩阵的概念

在这里插入图片描述

下面给出证明,寻找一种构造逆矩阵的方法:

在这里插入图片描述

其实对伴随矩阵的定义中本身就涵盖了:在线性代数中,一个方形矩阵的伴随矩阵是一个类似于逆矩阵的概念 。如果二维矩阵可逆,那么它的逆矩阵和它的伴随矩阵之间只差一个系数,对多维矩阵也存在这个规律。然而,伴随矩阵对不可逆的矩阵也有定义,并且不需要用到除法。

下面继续给出性质
6. 如 果 A 可 逆 , 那 么 A − 1 也 可 逆 , 并 且 ( A − 1 ) − 1 = A 7. 如 果 n 级 矩 阵 A 、 B 都 可 逆 , 则 A B 也 可 逆 , 并 且 ( A B ) − 1 = B − 1 A − 1 8. 如 果 n 级 矩 阵 A 可 逆 , 则 A T 也 可 逆 , 并 且 ( A T ) − 1 = ( A − 1 ) T 9. 可 逆 矩 阵 经 过 初 等 行 变 换 化 成 的 简 化 行 阶 梯 形 矩 阵 一 定 是 单 位 矩 阵 ; 10. 初 等 矩 阵 都 可 逆 , 并 且 它 的 逆 矩 阵 是 与 其 同 类 型 的 初 等 矩 阵 11. 用 一 个 可 逆 矩 阵 去 左 乘 或 者 右 乘 一 个 矩 阵 A , 不 改 变 A 的 秩 ; 6.如果A可逆,那么A^{-1}也可逆,并且(A^{-1})^{-1}=A\\7.如果n级矩阵A、B都可逆,则AB也可逆,并且(AB)^{-1}=B^{-1}A^{-1}\\8.如果n级矩阵A可逆,则A^T也可逆,并且(A^T)^{-1}=(A^{-1})^T\\9.可逆矩阵经过初等行变换化成的简化行阶梯形矩阵一定是单位矩阵;\\10.初等矩阵都可逆,并且它的逆矩阵是与其同类型的初等矩阵\\11.用一个可逆矩阵去左乘或者右乘一个矩阵A,不改变A的秩; 6.AA1(A1)1=A7.nABAB(AB)1=B1A18.nAAT(AT)1=(A1)T9.10.11.AA

2.2利用初等行变换求矩阵的逆


根 据 可 逆 矩 阵 的 性 质 , 我 们 直 到 , 如 果 存 在 初 等 矩 阵 P 1 , P 2 , . . . , P t 使 得 P t . . . P 2 P 1 A = I 那 么 A − 1 = P t . . . P 2 P 1 从 而 P t . . . P 2 P 1 I = A − 1 也 就 是 说 , 如 果 我 们 用 一 系 列 的 初 等 行 变 换 将 A 化 成 I , 那 么 同 样 的 初 等 行 变 换 就 把 I 化 为 A − 1 , 即 ( A , I ) − > ( I , A − 1 ) 根据可逆矩阵的性质,我们直到,如果存在初等矩阵P_1,P_2,...,P_t使得\\P_t...P_2P_1A=I\\那么A^{-1}=P_t...P_2P_1\\从而P_t...P_2P_1I=A^{-1}\\也就是说,如果我们用一系列的初等行变换将A化成I,那么同样的初等行变换就把I化为A^{-1},即\\(A,I)->(I,A^{-1}) P1,P2,...,Pt使Pt...P2P1A=IA1=Pt...P2P1Pt...P2P1I=A1AIIA1A,I>I,A1
给出例子:如何用初等变换法求逆矩阵? - 知乎 (zhihu.com)

三.矩阵对角化、迹与特征值、特征向量

3.1定义矩阵相似

在这里插入图片描述

相似矩阵具有如下性质:

1.相似矩阵具有相同的行列式;
2.相似矩阵具有相同的秩;
3.相似矩阵或者都可逆,或者都不可逆,当他们都可逆时,他们的逆矩阵也相似。

3.2定义迹

​ n级矩阵A主对角线上元素的和称为A的迹,记为tr(A)。

显然矩阵的迹具有下述性质:

1.tr(A+B)=tr(A)+tr(B)
2.tr(kA)=ktr(A)
3.tr(AB)=tr(BA)
4.相似矩阵的迹相等。

给出参考:矩阵的迹与相似 - 知乎 (zhihu.com)

3.3矩阵A的对角化

在这里插入图片描述

在这里插入图片描述

3.4特征值与特征向量

设 A 是 数 域 K 上 的 n 级 矩 阵 , 如 果 K n 中 有 非 零 列 向 量 α , 使 得 A α ⃗ = λ 0 α ⃗ 则 称 λ 0 为 A 的 一 个 特 征 值 , 称 α ⃗ 是 A 数 与 特 征 值 λ 0 的 一 个 特 征 向 量 。 可 以 看 作 , 对 α 做 A 的 变 换 , 等 价 于 α 方 向 上 进 行 λ 变 换 。 设A是数域K上的n级矩阵,如果K^n中有非零列向量α,使得\\A\vec{α}=λ_0\vec{α}\\则称λ_0为A的一个特征值,称\vec{α}是A数与特征值λ_0的一个特征向量。\\可以看作,对α做 A 的变换,等价于α方向上进行λ变换。 AKnKnα使Aα =λ0α λ0Aα Aλ0αAαλ

定理1

数 域 K 上 的 n 级 矩 阵 A 可 以 对 角 化 的 充 分 必 要 条 件 是 , A 有 n 个 线 性 无 关 的 特 征 向 量 α 1 ⃗ , . . . , α n ⃗ , 此 时 令 U = ( α 1 ⃗ , . . . , α n ⃗ ) U − 1 A U = d i a g { λ 1 , . . . , λ n } 其 中 λ i 是 α i ⃗ 所 属 的 特 征 值 。 数域K上的n级矩阵A可以对角化的充分必要条件是,A有n个线性无关的\\特征向量\vec{α_1},...,\vec{α_n},此时令\\U=(\vec{α_1},...,\vec{α_n})\\U^{-1}AU=diag\{λ_1,...,λ_n\}\\其中λ_i是\vec{α_i}所属的特征值。 KnAAn线α1 ,...,αn ,U=(α1 ,...,αn )U1AU=diag{λ1,...,λn}λiαi

定理2

λ 0 为 A 的 一 个 特 征 值 , α ⃗ 是 A 数 与 特 征 值 λ 0 的 一 个 特 征 向 量 。 则 等 价 于 : A α ⃗ = λ 0 α ⃗ , α ⃗ 不 等 于 0 , λ 0 ∈ K 等 价 于 : ( λ 0 I − A ) α ⃗ = 0 , α ⃗ 不 等 于 0 , λ 0 ∈ K 等 价 于 : α ⃗ 是 齐 次 线 性 方 程 组 ( λ 0 I − A ) X = 0 的 一 个 非 零 解 , , λ 0 ∈ K 等 价 于 : ∣ λ 0 I − A ∣ = 0 λ_0为A的一个特征值,\vec{α}是A数与特征值λ_0的一个特征向量。\\则等价于:A\vec{α}=λ_0\vec{α},\vec{α}不等于0,λ_0∈K\\等价于:(λ_0I-A)\vec{α}=0,\vec{α}不等于0,λ_0∈K\\等价于:\vec{α}是齐次线性方程组(λ_0I-A)X=0的一个非零解,,λ_0∈K\\等价于:|λ_0I-A|=0 λ0Aα Aλ0Aα =λ0α ,α 0λ0Kλ0IAα =0α 0λ0Kα 线λ0IAX=0λ0Kλ0IA=0

在这里插入图片描述

3.5特征值与特征向量的计算方法

在这里插入图片描述

需要注意:二重跟对应的解空间是二维的,一重跟对应的解空间是一维的。

给出参考:矩阵特征值和特征向量详细计算过程_Junerror的博客-CSDN博客_矩阵的特征值和特征向量怎么求

1.相似矩阵具有相同的特征多项式;
2.相似矩阵具有相同的特征值(包含重数);

3.6特征向量的相关性

1.属于同一特征值的特征向量线性无关;
	因为他们构成一个基础解系。
2.属于不同特征值的特征向量线性无关;

进而有:

1.数域K上n维矩阵可对角化的充要条件是:A的数域不同特征值的特征子空间维数和为n;
2.数据K上n级矩阵A如果有n个不同的特征值,则A可对角化。

3.7实对称矩阵的对角化

1.对称矩阵
	对称矩阵(Symmetric Matrices)是指以主对角线为对称轴,各元素对应相等的矩阵。在线性代数中,对称矩阵是一个方形矩阵,其转置矩阵和自身相等。
2.实对称矩阵
	实数域上的对称矩阵的简称。
3.正交矩阵
	如果 AAT=E(E 为单位矩阵,AT 表示“矩阵 A 的转置矩阵”)或 ATA=E,则 n 阶实矩阵 A 称为正交矩阵.

在这里插入图片描述

4.正交相似
	对于n级实矩阵,如果存在一个n级正交矩阵T,使得T^{-1}AT=B,则称A正交相似于B。

相关性质:

1.实对称矩阵的特征多项式在复数域中的每一个根都是实数;
2.实对称矩阵A的属于不同特征值的特征向量是正交的。
3.实对称矩阵一定正交相似于对角矩阵。

3.8实对称矩阵对角化步骤

在这里插入图片描述

给出参考:实对称矩阵的对角化习题评讲 - 百度文库 (baidu.com)

四.二次型与正定矩阵

4.1二次型定义

在这里插入图片描述

4.2非退化线性替换

​ 非退化线性替换的本质就是使用可逆矩阵做空间变换后不损失维度信息。

在这里插入图片描述

4.3等价二次型定义与标准型

数 域 K 上 的 两 个 n 元 二 次 型 X T A X 与 Y T B Y , 如 果 存 在 一 个 非 退 化 线 性 替 换 X = C Y , 把 X T A X 变 成 Y T B Y , 则 称 二 次 型 X T A X 与 Y T B Y 等 价 , 记 作 数域K上的两个n元二次型X^TAX与Y^TBY,如果存在一个非退化线性替换X=CY,\\把X^TAX变成Y^TBY,则称二次型X^TAX与Y^TBY等价,记作 KnXTAXYTBY,退线X=CYXTAXYTBY,XTAXYTBY

在这里插入图片描述

并 且 如 果 二 次 型 X T A X 等 价 于 一 个 只 含 平 方 项 的 二 次 型 , 则 这 个 只 含 平 方 项 的 二 次 型 称 为 X T A X 的 一 个 标 准 型 。 并且如果二次型X^TAX等价于一个只含平方项的二次型,则\\这个只含平方项的二次型称为X^TAX的一个标准型。 XTAXXTAX

4.4矩阵合同

在这里插入图片描述

4.5定义正定二次型

在这里插入图片描述

性质一:如果实对称矩阵A合同于实对称矩阵B,那么若A正定则B一定正定。
性质二:若实对称矩阵A正定,等价于A的特征值全部大于零。

对于实对称矩阵比较特殊,有如下性质:

在这里插入图片描述

n级实对称矩阵A是正定的:
等价于:A于I等价;
等价于:A的合同标准型中,主对角元全部大于0.
等价于:A的特征值全部大于0;
等价于:|A|>0;
等价于:tr(A)>0

4.6定义主子式

在这里插入图片描述

定理:实对称矩阵A正定的充分必要条件是A的所有顺序主子式全部大于0.

4.7半正定、负定、半负定

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值