【线性代数基础进阶】矩阵-part1

一、概念、运算

概念

m × n m\times n m×n个数排成如下 m m m n n n列的一个表格
( a 11 a 12 ⋯ a 1 n a 21 a 2 2 ⋯ a 2 ⋮ ⋮ ⋮ a m 1 a m 2 ⋯ a m n ) \begin{pmatrix}a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_22 & \cdots & a_2 \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn}\end{pmatrix} a11a21am1a12a22am2a1na2amn
称为一个 m × n m\times n m×n矩阵
m = n m=n m=n时,称为 n n n阶矩阵或 n n n阶方阵,简记为 A A A

如果一个矩阵的所有元素都是 0 0 0,即
( 0 0 ⋯ 0 0 0 ⋯ 0 ⋮ ⋮ ⋮ 0 0 ⋯ 0 ) \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix} 000000000
称这个矩阵为零矩阵,简记 O O O

如果 A A A B B B都是 m × n m\times n m×n矩阵,称为 A A A B B B是同型矩阵
A A A B B B都是 m × n m\times n m×n矩阵,如果
a i j = b i j ( ∀ i = 1 , 2 , ⋯   , m ; j = 1 , 2 , ⋯   , n ) a_{ij}=b_{ij}\quad(\forall i=1,2,\cdots,m;j=1,2,\cdots,n) aij=bij(i=1,2,,m;j=1,2,,n)
称矩阵 A A A B B B相等,记作 A = B A=B A=B

一个矩阵主对角元素的和叫际

运算

加法

同型矩阵可以做加法
A + B = ( a i j + b i j ) A+B=(a_{ij}+b_{ij}) A+B=(aij+bij)

加法运算法则( A , B , C A,B,C A,B,C同型)

  • A + B = B + A A+B=B+A A+B=B+A
  • ( A + B ) + C = A + ( B + C ) = A + B + C (A+B)+C=A+(B+C)=A+B+C (A+B)+C=A+(B+C)=A+B+C
  • A + O = O + A = A A+O=O+A=A A+O=O+A=A
  • A + ( − A ) = O A+(-A)=O A+(A)=O
数乘

数乘,注意不要和行列式混
k A = ( k a i j ) kA=(ka_{ij}) kA=(kaij)

数乘运算法则

  • k ( m A ) = m ( k A ) = ( k m ) A k(mA)=m(kA)=(km)A k(mA)=m(kA)=(km)A
  • ( k + m ) A = k A + m A (k+m)A=kA+mA (k+m)A=kA+mA
  • k ( A + B ) = k A + k B k(A+B)=kA+kB k(A+B)=kA+kB
  • 1 A = A , 0 A = O 1A=A,0A=O 1A=A,0A=O
乘法

A = ( a i j ) m × s , B = ( b i j ) s × n A B = C = ( c i j ) m × n c i j = a i 1 b 1 j + a i 2 b 2 j + ⋯ + a i s b s j = ∑ k = 1 s a i k b k j \begin{gather} A=(a_{ij})_{m\times s},B=(b_{ij})_{s\times n}\\ AB=C=(c_{ij})_{m\times n}\\ c_{ij}=a_{i1}b_{1j}+a_{i2}b_{2j}+\cdots+a_{is}b_{sj}=\sum\limits_{k=1}^{s}a_{ik}b_{kj} \end{gather} A=(aij)m×s,B=(bij)s×nAB=C=(cij)m×ncij=ai1b1j+ai2b2j++aisbsj=k=1saikbkj

注意

  1. A B ≠ B A AB\ne BA AB=BA
  2. A B = O ⇏ A = O 或 B = O AB=O\nRightarrow A=O或B=O AB=OA=OB=O
  3. A B = A C , A ≠ O ⇏ B = C AB=AC,A\ne O\nRightarrow B=C AB=AC,A=OB=C

对于向量,行在前列在后,乘出来是数;行在后列在前,乘出来是方阵

转置

A = ( a i j ) m × n A=(a_{ij})_{m\times n} A=(aij)m×n,将 A A A和行、列互换,得到的 n × m n\times m n×m的矩阵 ( a j i ) n × m (a_{ji})_{n\times m} (aji)n×m称为 A A A的转置矩阵,记为 A T A^{T} AT

转置运算法则:

  • ( A + B ) T = A T + B T (A+B)^{T}=A^{T}+B^{T} (A+B)T=AT+BT
  • ( k A ) T = k A T (kA)^{T}=kA^{T} (kA)T=kAT
  • ( A B ) T = B T A T (AB)^{T}=B^{T}A^{T} (AB)T=BTAT
  • ( A T ) T = A (A^{T})^{T}=A (AT)T=A
对角矩阵

Λ = ( λ 1 0 ⋯ 0 0 λ 2 ⋯ 0 ⋮ ⋮ ⋮ 0 0 ⋯ λ n ) \Lambda=\begin{pmatrix}\lambda_1&0&\cdots&0\\0&\lambda_2&\cdots&0\\\vdots&\vdots&&\vdots\\0&0&\cdots&\lambda_n\end{pmatrix} Λ= λ1000λ2000λn
这个方阵的特点是:不在对角线上的元素都是 0 0 0,我们把这种方阵称为对角矩阵,简称对角阵,对角阵也记作 Λ = d i a g ( λ 1 , λ 2 , ⋯   , λ n ) \Lambda=diag(\lambda_1,\lambda_2,\cdots,\lambda_n) Λ=diag(λ1,λ2,,λn)

d i a g ( a 1 , a 2 , ⋯   , a n ) d i a g ( b 1 , b 2 , ⋯   , b n ) = d i a g ( a 1 b 1 , a 2 b 2 , ⋯   , a n b n ) diag(a_{1},a_{2},\cdots,a_{n})diag(b_{1},b_{2},\cdots,b_{n})=diag(a_{1}b_{1},a_{2}b_{2},\cdots,a_{n}b_{n}) diag(a1,a2,,an)diag(b1,b2,,bn)=diag(a1b1,a2b2,,anbn)

运算法则

  • Λ 1 Λ 2 = Λ 2 Λ 1 \Lambda_{1}\Lambda_{2}=\Lambda_{2}\Lambda_{1} Λ1Λ2=
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值