Batch Nomalization
1.Batch Nomalization原理
图像预处理过程中通常会对图像进行标准化处理,这样能够加速网络的收敛。就是按照channel去求均值和方差,然后原数据减均值除标准差,使我们的feature map满足均值为0,方差为1的分布规律。
其中,伽马和白塔是两个参数,调整获得高斯分别均值和方差,使其更好的训练。这两个参数是在反向传播过程中得到的。
2.使用BN层注意事项
参考博客:
迁移学习
1.优势
1.快速训练理想结果
2.较小数据集也可以获得理想效果
注:使用别人的预训练模型参数时,注意别人图像预处理的方式。保持一致,不然效果可能很差!
2.简介
3.常见迁移学习方式
1.载入权重后训练所以参数 ->按理说效果最好
2.载入权重后只训练最后几层参数
3.载入权重后在原网络基础上再添加一层全连接层,仅仅训练最后一个全连接层。