Batch Nomalization 迁移学习

Batch Nomalization

1.Batch Nomalization原理

图像预处理过程中通常会对图像进行标准化处理,这样能够加速网络的收敛。就是按照channel去求均值和方差,然后原数据减均值除标准差,使我们的feature map满足均值为0,方差为1的分布规律。

其中,伽马和白塔是两个参数,调整获得高斯分别均值和方差,使其更好的训练。这两个参数是在反向传播过程中得到的。

2.使用BN层注意事项

参考博客:

Batch Normalization详解以及pytorch实验_pytorch batch normalization-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/qq_37541097/article/details/104434557?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522170979070916800225578151%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fblog.%2522%257D&request_id=170979070916800225578151&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~blog~first_rank_ecpm_v1~rank_v31_ecpm-1-104434557-null-null.nonecase&utm_term=BN&spm=1018.2226.3001.4450

 迁移学习

1.优势

1.快速训练理想结果

2.较小数据集也可以获得理想效果

注:使用别人的预训练模型参数时,注意别人图像预处理的方式。保持一致,不然效果可能很差!

2.简介

3.常见迁移学习方式

1.载入权重后训练所以参数  ->按理说效果最好

2.载入权重后只训练最后几层参数

3.载入权重后在原网络基础上再添加一层全连接层,仅仅训练最后一个全连接层。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DQ小恐龙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值