大语言模型中,role为user、assistant、system有什么区别

大语言模型中,role为user、assistant、system有什么区别

在大语言模型中,通常涉及到三种角色:用户(user)、助手(assistant)和系统(system)。它们的区别在于其在对话或交互过程中扮演的角色和功能。
系统(system):

  • 系统是指整个大语言模型或者其中的某个部分,负责处理用户输入并生成相应的输出。
  • 明确对话的主题或领域(例如,技术支持、教育、娱乐等)
  • 指示模型扮演特定角色(例如,老师、顾问等)

用户(user):

  • 用户是指与系统进行交互的个体或实体,通常是真实的人类用户或其他系统
  • 用户通过输入文本、语音或其他形式与系统进行沟通,提出问题、请求信息或执行操作。

助手(assistant):

  • 助手是一种程序或系统组件,设计用来协助用户完成特定的任务、获取信息或提供服务。
  • 助手通常具有自然语言处理能力,能够理解用户的输入,并根据输入提供相应的反馈、建议或执行操作,是模型生成响应的地方

示例:

 curl -s https://api.openai.com/v1/chat/completions \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer YOUR-API-KEY" \
  -d '{
    "model": "gpt-3.5-turbo-16k",
    "messages": [
          {
         "role": "system",
         "content": "您是足球专家"
          },
          {
                 "role": "user",
                 "content": "谁赢得了2018年的FIFA世界杯?"
          },
          {
                 "role": "assistant",
                 "content": "法国赢得了2018年的FIFA世界杯。"
          },
          {
                 "role": "user",
                 "content": "下一届FIFA世界杯什么时候

举行?"
          }
        ]
  }'


要实现多轮对话,也就说要记住历史问答,该如何设置System、User、Assistant?

让大模型记住历史问答,就要传递上下文,在每次请求中,将之前的对话内容作为上下文传递给模型。其实就是初始化一个列表,将大模型每次的回答,保存给Assistant,append到列表中。

import openai

# 初始化对话历史
conversation_history = [
    {"role": "system", "content": "你是一个智能助手,专注于提供技术支持。请记住用户的历史问题和你的回答,以便在后续对话中提供更好的帮助。"}
]

# 用户的第一个问题
user_input = "我需要安装一个软件,你能告诉我怎么做吗?"
conversation_history.append({"role": "user", "content": user_input})

# 调用API生成响应
response = openai.ChatCompletion.create(
    model="gpt-3.5-turbo",
    messages=conversation_history
)

# 获取助手的回答
assistant_response = response['choices'][0]['message']['content']
conversation_history.append({"role": "assistant", "content": assistant_response})

print(assistant_response)

# 用户的第二个问题
user_input = "上次你提到如何安装软件,我想知道如何配置它。"
conversation_history.append({"role": "user", "content": user_input})

# 调用API生成响应
response = openai.ChatCompletion.create(
    model="gpt-3.5-turbo",
    messages=conversation_history
)

# 获取助手的回答
assistant_response = response['choices'][0]['message']['content']
conversation_history.append({"role": "assistant", "content": assistant_response})

print(assistant_response)

管理历史对话

在进行几轮对话后,上下文可能非常长:

  • 在对话进行到一定阶段后,可以对之前的对话进行摘要,以减少上下文的长度,同时保留关键信息。
  • 如果有可能,使用外部存储(如数据库或会话管理系统)来保存用户的历史对话,以便在后续对话中调用。

参考:

  • https://blog.csdn.net/qq_43276566/article/details/139956449
  • https://blog.csdn.net/Tory2/article/details/132823810
<think>好的,用户想了解chat-template中systemuserassistant的作用或用法。首先,我需要回忆一下相关的知识。在对话系统中,这三个角色通常用来区分不同的消息来源。比如,system一般用于设定对话的背景或指令,user是用户的输入,assistant则是模型的回复。 接下来,我需要确认这些角色在具体模型中的使用方式。比如在GLM或者Llama这样的模型中,chat-template的配置可能会有所不同。查阅引用中的资料,看到引用[2]和[3]提到了一些示例,其中system用来设置角色扮演,user是用户的问题,而assistant是模型的回答。需要确保引用的例子正确,比如引用[2]中的代码示例,messages数组里包含systemuser的角色,这可能对应到chat-template的结构。 另外,用户可能想知道如何正确格式化这些消息。例如,是否需要在每个消息前加上角色标识符,或者是否有特定的分隔符。例如,在GLM模型中,可能使用类似<|system|>、<|user|>、<|assistant|>这样的标签来区分不同角色,并且用<|assistant|>来触发模型的生成。 还要考虑不同模型之间的差异。比如,THUDM/glm-4-9b-chat(引用[3])可能和Yi-1.5模型(引用[4])在chat-template的处理上有不同的要求。需要指出这些差异,并提供相应的示例。 用户可能的应用场景包括构建对话系统或调整模型行为,所以需要说明每个角色的具体用途。比如,system可以设定模型的行为准则,user提供输入,assistant则是模型的回复。同时,可能需要提到如何组合多个对话轮次,比如在messages数组中按顺序排列历史消息。 另外,需要注意LaTeX格式的要求,确保行内公式用$...$,独立公式用$$...$$,并且正确使用中文回答。同时,生成的相关问题需要与chat-template的使用相关,比如配置方法、多轮对话处理、模型差异等。 最后,检查引用是否正确,比如引用[2]中的示例是否符合角色分配,引用[3]和[4]是否涉及不同模型的chat-template实现。确保回答结构清晰,分点说明每个角色的作用,并给出具体示例,帮助用户理解如何应用在实际代码中。</think>### Chat-Template中SystemUserAssistant的作用及用法 在对话模型(如GLM、Llama等)的`chat-template`配置中,**system**、**user**和**assistant**三个角色用于区分对话的上下文角色,具体作用如下: --- #### 1. **角色定义** - **System**:设定对话的背景、指令或模型行为规范。 - 例如:`{"role": "system", "content": "你是一个乐于助人的AI助手"}` - 常用于初始化模型的响应风格[^2][^3]。 - **User**:表示用户的输入内容。 - 例如:`{"role": "user", "content": "如何学习Python?"}` - 用户的问题或请求会标记为此角色。 - **Assistant**:表示模型的回复内容。 - 例如:`{"role": "assistant", "content": "建议从基础语法开始学习。"}` - 在多轮对话中,历史回复需标记为此角色以保持上下文连贯性[^4]。 --- #### 2. **格式示例** 以GLM-4-9B-Chat模型为例,对话模板的格式通常为: ```python messages = [ {"role": "system", "content": "你是一个小红书用户"}, {"role": "user", "content": "推荐一款适合夏天的护肤品"}, {"role": "assistant", "content": "可以尝试清爽型保湿乳液。"} ] ``` 模型会根据`messages`中的角色顺序生成连贯回复[^2]。 --- #### 3. **技术细节** - **分隔符**:部分模型(如GLM)使用`<|role|>`标签区分角色,例如: ```text <|system|>你是一个程序员</s> <|user|>如何实现快速排序?</s> <|assistant|>以下是Python代码示例...</s> ``` - **多轮对话**:需按时间顺序排列`user`和`assistant`的交替记录,例如: ```python messages = [ {"role": "system", "content": "你是一个数学老师"}, {"role": "user", "content": "解方程$x^2 + 2x + 1 = 0$"}, {"role": "assistant", "content": "方程可化简为$(x+1)^2=0$,解为$x=-1$。"}, {"role": "user", "content": "判别式如何计算?"} ] ``` --- #### 4. **模型差异** - **GLM系列**:需严格遵循`system`→`user`→`assistant`的顺序,并使用`<s>`作为分隔符[^5]。 - **Llama/Yi系列**:可能支持更灵活的配置,但需在模板中明确角色标识。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值