一、常用评价指标的介绍
二分类问题
分类结果的混淆矩阵
真实情况 | 预测结果 | |
---|---|---|
正例 | 反例 | |
正例 | TP(true positive) | FN(false negative) |
反例 | FP(false positive) | TN(true negative) |
- 查全率: 真实正例被预测为正例的比例
R = T P T P + F N {R=\frac {TP}{TP+FN}} R=TP+FNTP - 查准率:预测为正例的实例中真实正例的比例
P = T P T P + F P {P=\frac {TP}{TP+FP}} P=TP+FPTP
注意:
一般情况下,查准率高,查全率就会偏低,反之。
为了更好的度量一个模型的好坏,通常需要综合考虑查准率和查全率——F1度量(常用的度量)
F
1
=
2
P
R
P
+
R
=
2
T
P
样
例
总
数
+
T
P
−
T
N
{F1=\frac{2PR}{P+R}=\frac{2TP}{样例总数+TP-TN}}
F1=P+R2PR=样例总数+TP−TN2TP
二、实际应用
- 问题描述
目标图像识别系统识别的效果
实验结果如下:
算法1(产品1)的检测结果:检测出“男生”人数82人,其中78人为男生,4人其实是女生;
算法2(产品2)的检测结果:检测出“男生”人数88人,其中80人为男生,8人其实是女生;
经过人工检测,视频中实际准确的总人数为100人,其中男生80人,女生20人。
判断哪种算法更好?
- 获取混淆矩阵
算法1
算法2真实情况 预测结果 男 女 男 78 2 女 4 16 真实情况 预测结果 男 女 男 80 0 女 8 12 - 计算查准率,查全率,F1-score
算法1
查准率:
P = 78 78 + 2 = 0.975 {P=\frac{78}{78+2}=0.975} P=78+278=0.975
查全率:
R = 78 78 + 4 = 0.9512 {R=\frac{78}{78+4}=0.9512} R=78+478=0.9512
F1-score:
F 1 = 2 ∗ 78 100 + 78 − 16 = 0.963 {F1=\frac{2*78}{100+78-16}=0.963} F1=100+78−162∗78=0.963
算法2
查准率:
P = 80 80 + 0 = 1 {P=\frac{80}{80+0}=1} P=80+080=1
查全率:
R = 80 80 + 8 = 0.91 {R=\frac{80}{80+8}=0.91} R=80+880=0.91
F1-score:
F 1 = 2 ∗ 80 100 + 80 − 12 = 0.952 {F1=\frac{2*80}{100+80-12}=0.952} F1=100+80−122∗80=0.952 - 评估算法
从查准率评价指标来看,算法2都要优于算法1,从查全率和F1度量评价指标来看,算法1都要优于算法2。总的来说,算法2更好。
参考资料
【机器学习】(周志华–西瓜书) 真正例率(TPR)、假正例率(FPR)与查准率(P)、查全率(R)
【机器学习】(周志华–西瓜书)的电子档教材