计算机数值分析-常微分方程的差分方法-07

计算机数值分析

常微分方程的差分方法

本章学习的是微分方程的近似解法,已知初值(x0,y0),和求积函数,求解xn时yn的近似值,问题是对于不能直接通过计算得出结果计算式子。
总体思想就是求曲线的积分,求面积来代替求解,然后使用微分法,离散化成一个一个区域求面积,所有面积的和就是yn,

  • 每个面积用长方形代替长取区域长度,宽取区域左端点求的方法交欧拉算法(Euler),
  • 取右端点的叫隐式欧拉算法,
  • 取中点的叫中点欧拉格式,
  • 用梯形计算区域面积的叫梯形格式,
  • 由于右端点未知,用欧拉算法先求出来,再用梯形公式校正,就是改进的欧拉算法。
  • 龙格库塔算法就是在区域内取几个点,把对应的y加权求平均作为长方形的高。求解。

常微分方程只有少数情况下有解析解,大多数情况下是近似解,近似解法分为:近似解析法、数值解法。

李普希兹条件:
在这里插入图片描述

欧拉方法:

把区间【a,b】等分n段,步长h=(a+b)/n

求解公式:在这里插入图片描述

其他公式:001

改进的欧拉公式:

  • 先利用欧拉公式初步求一个近似值
  • 带入梯形公式进一步校正
    在这里插入图片描述
    也可以写成这个格式:
    在这里插入图片描述

龙格-库塔方法(Runge-Kutta)

间接使用泰勒级数法
二阶龙格库塔格式:
在这里插入图片描述
三阶龙格库塔格式:
在这里插入图片描述
四阶龙格库塔格式(经典):
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值