计算机数值分析
常微分方程的差分方法
本章学习的是微分方程的近似解法,已知初值(x0,y0),和求积函数,求解xn时yn的近似值,问题是对于不能直接通过计算得出结果计算式子。
总体思想就是求曲线的积分,求面积来代替求解,然后使用微分法,离散化成一个一个区域求面积,所有面积的和就是yn,
- 每个面积用长方形代替长取区域长度,宽取区域左端点求的方法交欧拉算法(Euler),
- 取右端点的叫隐式欧拉算法,
- 取中点的叫中点欧拉格式,
- 用梯形计算区域面积的叫梯形格式,
- 由于右端点未知,用欧拉算法先求出来,再用梯形公式校正,就是改进的欧拉算法。
- 龙格库塔算法就是在区域内取几个点,把对应的y加权求平均作为长方形的高。求解。
常微分方程只有少数情况下有解析解,大多数情况下是近似解,近似解法分为:近似解析法、数值解法。
李普希兹条件:
欧拉方法:
把区间【a,b】等分n段,步长h=(a+b)/n
求解公式:
其他公式:
改进的欧拉公式:
- 先利用欧拉公式初步求一个近似值
- 带入梯形公式进一步校正
也可以写成这个格式:
龙格-库塔方法(Runge-Kutta)
间接使用泰勒级数法
二阶龙格库塔格式:
三阶龙格库塔格式:
四阶龙格库塔格式(经典):