CIFReNet-用于语义分割的轻量型模型 | TIP2020

Context-Integrated and Feature-Refined Network for Lightweight Object Parsing

创新点

  • 提出一个轻量型的CIFReNet模型结构,由 Long-skip Refinement Module (LRM) 和 Multi-scale Context Integration Module (MCIM) 组成,模型多次使用全局平均池化来添加全局信息。
  • LRM 模块能够使空间信息在高维和低维更加容易得传播,并且使用通道注意力机制提高低维的特征提炼。
  • MCIM 模块由三个级联的 DSP 模块组成,它能够编码多尺度的上下文信息和提高视野的范围。

问题

  • 为语义分割任务提出一个能够在准确度和速度之间进行平衡的模型。

方法

Backbone

在这里插入图片描述

模型的 Backbone 采用轻量型网络 MobileNet V2,使用扩张卷积(Dilated Convolutions)取代后三层(Stage5, Stage6, Stage7),扩张率为{3, 5, 7}。

CIFReNet

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值