Context-Integrated and Feature-Refined Network for Lightweight Object Parsing
创新点
- 提出一个轻量型的CIFReNet模型结构,由 Long-skip Refinement Module (LRM) 和 Multi-scale Context Integration Module (MCIM) 组成,模型多次使用全局平均池化来添加全局信息。
- LRM 模块能够使空间信息在高维和低维更加容易得传播,并且使用通道注意力机制提高低维的特征提炼。
- MCIM 模块由三个级联的 DSP 模块组成,它能够编码多尺度的上下文信息和提高视野的范围。
问题
- 为语义分割任务提出一个能够在准确度和速度之间进行平衡的模型。
方法
Backbone
模型的 Backbone 采用轻量型网络 MobileNet V2,使用扩张卷积(Dilated Convolutions)取代后三层(Stage5, Stage6, Stage7),扩张率为{3, 5, 7}。