EfficientDet-用于目标检测跨尺度特征融合可缩放网络 | CVPR2020

EfficientDet论文提出了BiFPN模块,改进了多尺度特征融合,通过双向路径和加权融合提升效率。网络采用复合缩放方法,通过单一参数调整网络的深度、宽度和输入分辨率,实现准确率与效率的平衡。BiFPN删除无效节点,使用残差链接,并引入加权特征融合策略,以适应不同分辨率特征的融合需求。
摘要由CSDN通过智能技术生成

论文:EfficientDet: Scalable and Efficient Object Detection

创新点

  • 本篇论文基于FPN和PANet提出了一种新的BiFPN模块。该模块可以高效的实现双向跨尺度连接和加权特征融合;

  • 基于BiFPN模块提出了EfficientDet网络。该网络对于目标检测提出一种新的复合缩放方法,通过一个参数来控制网络中的其他参数。

问题

  • 在FPN中不能有效的进行多尺度特征融合,虽然后来也有一些论文研究跨尺度的特征融合,但是也只是将特征进行简单的相加并没有加以区分;

  • 作者观察到由于不同的特征具有不同的分辨率,所以它们对于特征融合的输出贡献也会不相同;

  • 在以前的目标检测中主要依靠更大的主干网络和更大的图像分辨率,但是作者观察到缩放特征网络的大小和框/类别预测网络对于正确率和效率也很重要。

方法

BiFPN

在这里插入图片描述
删除仅有一个输入节点: 当一个节点只有一个输入而没有特征融合时那么它对于整个融合特征模块是没有帮助的,删除节点还有助于下降参数了;

残差链接:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值