论文:EfficientDet: Scalable and Efficient Object Detection
创新点
-
本篇论文基于FPN和PANet提出了一种新的BiFPN模块。该模块可以高效的实现双向跨尺度连接和加权特征融合;
-
基于BiFPN模块提出了EfficientDet网络。该网络对于目标检测提出一种新的复合缩放方法,通过一个参数来控制网络中的其他参数。
问题
-
在FPN中不能有效的进行多尺度特征融合,虽然后来也有一些论文研究跨尺度的特征融合,但是也只是将特征进行简单的相加并没有加以区分;
-
作者观察到由于不同的特征具有不同的分辨率,所以它们对于特征融合的输出贡献也会不相同;
-
在以前的目标检测中主要依靠更大的主干网络和更大的图像分辨率,但是作者观察到缩放特征网络的大小和框/类别预测网络对于正确率和效率也很重要。
方法
BiFPN
删除仅有一个输入节点: 当一个节点只有一个输入而没有特征融合时那么它对于整个融合特征模块是没有帮助的,删除节点还有助于下降参数了;
残差链接: