import torch
import torch.nn as nn
import math
entroy=nn.CrossEntropyLoss()
input=torch.Tensor([[-0.7715, -0.6205,-0.2562]])
target = torch.tensor([0])
print(target)
tensor([0])
output = entroy(input, target)
print(output)
tensor(1.3447)
这里target只需要给定一个值就可以了,计算的时候只有对应类别的softmax之后的值参与ln()运算,我们也可以假设target属于第2类,那么target为1,即
target1 = torch.tensor([1])
output1=entroy(input, target1)
print(output1)
tensor(1.1937)
具体的过程是如何实现的呢?
首先我们得到的input是需要进行softmax()操作,然后根据target的索引确定哪个值需要继续后续的ln()操作。(注意:这里不是log()操作)
下面介绍nn.BCELoss()方法:
input=torch.randn(1,3)
print(input)
tensor([[ 0.0013, -0.1416, 0.1246]])
m=nn.Sigmoid()
input=m(input)
print(input)
tensor([[0.5003, 0.4647, 0.5311]])
target=torch.FloatTensor([[0,1,0]])
out=bce(input,target)
print(out)
tensor(0.7392)
它这里的标签不是一个值,针对每一个**sigmoid()**处理过的数据都有其类别,target只能取0或者1,必须保证类别信息和输入的数据信息保持一致,这一点与nn.CrossEntroyLoss()明显不同,计算方法如下:
bce1=0*ln(0.5003)+(1-0)ln(1-0.5003)
bce2=1ln(0.4647)+(1-1)ln(1-0.4647)
bce3=0ln(0.5311)+(1-0)ln(1-0.5311)
bce=(-1)(bce1+bce2+bce3)/3 = 0.7392
最后介绍nn.BCEWithLogitsLoss()方法,它与上面的nn.BCELoss()差别不大,已经把Sigmoid()集成在里面了,不需要单独定义Sigmoid()操作了
>>> Newbce= nn.BCEWithLogitsLoss()
>>> input=torch.randn(1,3)
>>> input
tensor([[-0.4616, 2.4456, -0.6359]])
>>> target
tensor([[0., 1., 0.]])
>>> output=Newbce(input,target)
>>> output
tensor(0.3323)
具体计算方法参考bce给出的公式即可