摘要:
新一代人工智能技术的特征,表现为借助GPU计算、云计算等高性能分布式计算能力,使用以深度学习
算法为代表的机器学习算法,在大数据上进行学习训练,来模拟、延伸和扩展人的智能。不同数据来源、不同的
计算物理位置,使得目前的机器学习面临严重的隐私泄露问题,因此隐私保护机器学习(PPML)成为目前广受关注
的研究领域。采用密码学工具来解决机器学习中的隐私问题,是隐私保护机器学习重要的技术。该文介绍隐私保
护机器学习中常用的密码学工具,包括通用安全多方计算(SMPC)、隐私保护集合运算、同态加密(HE)等,以及
应用它们来解决机器学习中数据整理、模型训练、模型测试、数据预测等各个阶段中存在的隐私保护问题的研究
方法与研究现状。
1.引言
人工智能火热的同时,也带来了严重的隐私问题。由于这一代人工智能技术是建立在大数据技术和高性能计算之上的,而大数据一定来源多样,本身存在隐私范围扩大、隐私权利归属复杂、隐私保护难度大的问题。高性能计算一般以云计算和分布式计算为特征,用户数据脱离本地计算,数据的访问控制、隐私保护难度增大。为了解决人工智能中的隐私保护问题,研究者提出了各种隐私保护机器学习的方法,这其中,密码学技术在其中扮演了至关重要的角色。