使用
import torch.nn as nn
import torch
class net(nn.Module):
def __init__(self):
super(net,self).__init__()
self.register_buffer("a",torch.ones(2,3))#从此,self.a其实就是torch.ones(2,3)。
def forward(self,x):
return x+self.a#使用
理解
register_buffer
的作用是将torch.ones(2,3)这个tensor注册到模型的 buffers() 属性中,并命名为a,这代表a对应的是一个持久态,不会有梯度传播给它,但是能被模型的state_dict记录下来。可以理解为模型的常数。
注意,没有保存到模型的 buffers() 或 parameters() 属性中的参数是不会被记录到state_dict中的,在 buffers() 中的参数默认不会有梯度,parameters() 中的则相反。
我们可以将前者理解为常数,后者理解为变量。
- requires_grad=False
- 不会注册到模型参数中model.parameters()
- 会注册到模型model.state_dict()中。
一个很多人疑问的问题是:既然register_buffer的对象是模型中的常数,那为什么不直接使用下面的方法一,还不更直接吗?
class net(nn.Module):
def __init__(self,x=None):
super(net,self).__init__()
self.a=torch.ones(2,3)#方法一
self.register_buffer("a",torch.ones(2,3))#方法二
这么跟你说吧,如果常数是这种torch.ones(2,3)
的话,两者确实在使用体验上没有任何差别(虽然后者会把torch.ones(2,3)
这个常数注册到model.state_dict()中,前者不会)。
但是,我们可能会遇到这样的场景:那个常数不是这么简单的常数,而是外部传入的。
class net(nn.Module):
def __init__(self,x=None):
super(net,self).__init__()
self.a=x#方法一
self.register_buffer("a",x)#方法二
x=**
x=***
x=**
#第一次运行的时候,你经过千辛万苦得到了模型中的常数x。
model=net(x)
#训练模型
#保存模型。
#完毕
#如果是方法一,你又要运行一遍获得x的过程。
x=**
x=***
x=**
model=net(x)
#载入模型model.load
#使用模型
#如果是方法二,不需要获得x,因为register_buffer会将常数x保存在state_dict中,载入就行了。
model=net(x)
#载入模型model.load
#使用模型