💥1 概述
使用非线性Newmark方法的隐式动态求解器及示例
函数调用:Result=Newmark_Nonlinear(Elements,Material,Support,Free,M,C,f,fs,delta)
输入参数:Elements:一个结构体,包含各元素的信息。Elements{i}.DOFs=[j k]表示元素i连接节点j与k的自由度;Elements{i}.Material=m表示元素i采用材料m的属性。
Material:一个结构体,包含双线性弹簧的材料属性。其中,Material{m}.k1为弹簧初始刚度;Material{m}.x1为弹簧刚度开始减小的变形阈值;Material{m}.k2为减小后的弹簧刚度。
Support:一个向量,表示固定支座的自由度,大小为(nSupport,1)。
Free:一个向量,表示自由度,大小为(nFree,1)。
M:质量矩阵,大小为(nFree*nFree)。
C:阻尼矩阵,大小为(nFree*nFree)。
f:外部力矩阵,大小为(nFree,N),其中N为动态力数据点的数量。
fs:采样频率。
delta:残余力的收敛标准。
输出:Result:一个结构体,包含以下内容:Result.Displacement:位移矩阵,大小为(nFreeN)。Result.Velocity:速度矩阵,大小为(nFreeN)。Result.Acceleration:加速度矩阵,大小为(nFree*N)。
注释:假设元素为连接节点的双线性刚度弹簧(无迟滞效应)。
📚2 运行结果
部分代码:
clear; clc; close all;
%Input
M=5*diag(ones(3,1)); %Mass matrix
C=0.01*M; %Damping matrix
f=randn(3,10000); %force
fs=100; %Sampling frequency
delta=10e-4; %Convergance criterion for residual force
%Material types definition
Material{1}.k1=1000; %Spring stiffness
Material{1}.x1=0.01; %Spring deformation beyond which the stiffness decreases
Material{1}.k2=10; %Reduced stiffness
%Elements connectivity and material used
Elements{1}.DOFs=[1 2]; Elements{1}.Material=1;
Elements{2}.DOFs=[2 3]; Elements{2}.Material=1;
Elements{3}.DOFs=[3 4]; Elements{3}.Material=1;
%Support and Free DOFs
Support=[1]; Free=[2 3 4];
Result=Newmark_Nonlinear(Elements,Material,Support,Free,M,C,f,fs,delta);
t=[0:1/fs:9999/fs];
figure;
subplot(3,1,1);
plot(t,Result.Displacement(1,:)); xlabel('Time'); ylabel('DSP2');
subplot(3,1,2);
plot(t,Result.Displacement(2,:)); xlabel('Time'); ylabel('DSP3');
subplot(3,1,3);
plot(t,Result.Displacement(3,:)); xlabel('Time'); ylabel('DSP4');
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]苟英旗.基于Newmark法的线性隐式数值积分方法及其在阻尼器减震结构动力分析中的应用[J].[2024-07-27].
[2]范玉川,黄清云,鲁艳,等.基于Newmark-β法的非线性体系动载荷识别[J].东北大学学报:自然科学版, 2019, 40(12):5.DOI:CNKI:SUN:DBDX.0.2019-12-016.
🌈4 Matlab代码实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取
详情请联系: