机器学习——神经网络模型构建(neural network)

神经网络的表示

  1. 如果有100个特征,并且产生二次特征式,还有高次特征式,基于数量庞大的此特征来进行非线性分类器将不是一个很容易的事情。对于很多机器学习的例子,特征数是非常大的,可能远不止100个。
  2. 学习复杂的非线性假设上具有很好的适用性
  3. 寻找一种类似于人类大脑的神经网络算法,对于不同的输入数据,都可以进行快速的学习
  4. 分层表示,不同层有不同的参数
    神经网络的表示

模型展示

模型的矩阵描述

  1. 可以将第一层的特征输入值当做a ^ (1),即当做第一层的激活项(本层的输出)
    全部矩阵化表示
  2. 神经网络所做的事情就像是逻辑回归,知识它的输入不再是原来的特征,而是通过隐藏层(hidden layers)的激活项(activate),而隐藏层的激活项是通过原本特征经过某些函数计算得来的,其中涉及到参数theta。隐藏层通过设置不同的theta并根据特征x_i,可以得到很多有用的特征,再进行逻辑回归,就能得到很好的假设函数。

具体实例1

具体例子逻辑与的计算
逻辑或的神经网络描述

具体实例2

实现非逻辑运算
异或逻辑函数

多元分类问题

通过向量的不同维度,不同单位向量来表示不同物体
多元分类

卷积神经网络(Convolutional Neural Network,CNN)是一种机器学习算法,其主要应用于图像识别、计算机视觉和模式识别等领域。CNN模型的设计灵感来源于科学家们对于生物视觉系统的研究。该算法的核心概念是通过卷积层、池化层和全连接层的组合,对输入的图像进行特征提取和分类。 在CNN中,卷积层是该模型的主要组成部分之一。通过定义一组卷积核(或过滤器),卷积层可以对输入的图像进行滤波操作,将原始图像中的特定特征(例如边缘和纹理)提取出来,并生成一系列特征图。这些特征图可以被认为是对原始图像进行不同尺度和方向的特征提取。 在经过卷积层之后,通常会接着使用池化层来进行下采样操作。池化层的主要目的是减小特征图的尺寸,同时保留重要的特征信息。最常见的池化操作是最大池化,它通过从特定区域选择最大值来减小特征图的尺寸。 最后,经过卷积层和池化层的多次迭代后,最后会以全连接层作为输出层,进行分类任务。全连接层的每个节点都与前一层的所有节点相连接,主要用于将最后一层的特征进行整合,并根据特征进行分类或回归。 相比于传统机器学习算法,CNN在处理图像任务方面具有更好的性能。这是因为卷积层可以通过共享权重和局部连接的方式进行参数的共享,大大减少了需要训练的参数数量,并且能够有效处理图像的平移不变性。此外,卷积神经网络还可以通过堆叠多个卷积层和全连接层来构建深层网络模型,从而进一步提高模型的性能。 总而言之,卷积神经网络是一种强大的机器学习算法,特别适用于图像识别和计算机视觉任务。通过卷积层、池化层和全连接层的组合,CNN可以有效地提取图像中的特征,并进行分类或回归等任务。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值