神经网络的表示
- 如果有100个特征,并且产生二次特征式,还有高次特征式,基于数量庞大的此特征来进行非线性分类器将不是一个很容易的事情。对于很多机器学习的例子,特征数是非常大的,可能远不止100个。
- 学习复杂的非线性假设上具有很好的适用性
- 寻找一种类似于人类大脑的神经网络算法,对于不同的输入数据,都可以进行快速的学习
- 分层表示,不同层有不同的参数
模型展示
- 可以将第一层的特征输入值当做a ^ (1),即当做第一层的激活项(本层的输出)
- 神经网络所做的事情就像是逻辑回归,知识它的输入不再是原来的特征,而是通过隐藏层(hidden layers)的激活项(activate),而隐藏层的激活项是通过原本特征经过某些函数计算得来的,其中涉及到参数theta。隐藏层通过设置不同的theta并根据特征x_i,可以得到很多有用的特征,再进行逻辑回归,就能得到很好的假设函数。
具体实例1
具体实例2
多元分类问题
通过向量的不同维度,不同单位向量来表示不同物体