【论文阅读】2010 MILIS: Multiple Instance Learning with Instance Selection

摘要

多实例学习是基于有监督的处理包分类的一种范式。每个包都包含大量可以提取特征的实例。MIL的复杂性很大程度由于实例的数量。
由于面临较大的实例空间,所以需要涉及有效的实例选择技术。
MILIS,一种基于自适应实例选择的新型 MIL 算法。在交替优化框架中通过以保证收敛迭代方式将实例选择和分类器学习的步骤交织在一起来做到这一点。
初始的实例选择:基于负实例使用核密度估计器

引用

背景:多实例学习基于有监督学习;在包级别进行分类;包与标签相关联;关键假设负包只包含负实例,正包包含正负实例;实例标签的隐藏是一个挑战;因此传统的有监督分类方法不适用,所以对于MIL的特殊结构需要设计特殊的方法处理MIL问题。
应用领域:很多计算机视觉还有机器学习的问题可以通过MIL解决;比如基于内容的图像追踪、图像级的图像标记。
引出问题:实际问题中大量的实例会影响MIL效率;比如在图像问题中;通过MIL的假设,有效的修剪实例是一个挑战。
提出算法:算法-总体优点-具体优点
MILIS;有效且适合大规模;三个优点:基于负实例分布、单向量表示、分类器更有效率
组织结构

相关工作

MIL方法分为两类:生成方法、判别方法;生成方法:定位一个高正概率的区域;距离生成方法相关的几个算法工作;
判别方法:为适应标准的监督学习;举例
另一种划分:自上而下、自下而上
读不懂。。。

算法概述

介绍符号表示
描述MILIS的整体框架,首先基于二分类;再基于多分类介绍;通过图一描述,首先介绍图的表示形式,再介绍每一步步骤;
第一步:instance selection-> I P IP IP,通过负实例的分布,从每个正包挑选一个最不负的实例。
第二步:通过相似性,映射成一个单向量
在这里插入图片描述
第三步:根据映射空间训练SVM分类器,基于在训练数据上的分类结果更新 I P IP IP。直到收敛
训练集->IP;测试集通过IP得到特征向量,应用训练好的SVM得到测试集的分类结果
MILIS的实例选择与其他基于SVM的MIL方法的区别(没看懂。。。)

实例选择和分类器学习

还是花了一大段讲MILES,其产生的特征向量非常高维,高度复杂
所以我的方法MILIS,进行实例修建和选择,降低了计算复杂度

Bag-Level Feature Representation


d为包与实例之间的哈夫曼距离
如果x为正实例,则正包具有高相似性,负包具有低相似性
然后又提到MILES的映射方法,指出了其方法的不足

Initial Instance Selection

通过对负分布进行建模(因为负实例数量庞大,所以对负实例的建模更有效)
从每个正包中选择具有最低似然值的单个实例,即最少负实例作为 IP。另一方面,对于每个负包,我们选择具有最高似然值的单个实例,即最负的实例,作为特征映射中使用的 IP。获得的IP总数等于袋子的数量。(不仅是低纬度特征空间,并且没有太多判别能力的损失,因为IP来自每一个包)

Classification

没怎么看懂
大概就是基于训练特征空间学习了SVM分类器,分类器得到特征的线性权重 w w w,通过公式6对权重和特征向量进行处理

Instance Update

更新每个包选择出的实例去作为IP
在更新当前包时,IP中的其余实例保持不变
更新是在当前包中选择一个使得公式7值最小的实例
每次更新后,包的特征值都会改变(但是只考虑变化的特征,更新分类器的输出)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值