B站学习视频https://space.bilibili.com/230105574/channel/seriesdetail?sid=1569601
一.引入状态-空间表达
(本质上是使用一组向量的线性组合来表示整个系统任意物理量,也就是一个特征分解的过程)
现代控制理论的基础是 状态-空间表达方式,还是用经典控制理论里的弹簧系统
在经典控制理论中会用到拉普拉斯变换来对上式进行转换,以找到这个系统的传递函数,而在现代控制理论中会找新的表达方式——状态-空间,这里可以理解成一种包含输入、输出和系统变量的集合,把这个集合用一阶微分方程的方式进行表达
就比如上面的就要选择合适的状态变量消除高阶项,例如
(其实就是多用一个变量表示一阶项)
然后用矩阵的形式表示上述的,u(t)是输入,y=x是输出,只不过所有的东西都表示成的关系——
因此在现代控制理论中,特征值和系统的稳定性是会有一定关系的
二.状态-空间方程求解方法
例1:
当出现多个状态变量时,有如下两种情况(无耦合和有耦合):
例2: 例3:
如果表述为矩阵的形式即为,就是状态空间方程
例2是无耦合的形式,
例3是耦合的形式,这两个变化率不仅仅和自身状态相关的,
这两个例子的求解都期望得到一个和例1一样的形式,即,
表示
通过泰勒级数和矩阵分解可以得到(具体怎么求可以看学习视频,链接在文章置顶),是A的特质值,P是特征值对应的特征向量,有了这些铺垫就可以开始求解:
回到上一部分得到的一般状态方程
三.相图和相轨迹
其实就是表示和的关系,注意是这个形式,它本身是一个函数,而x是一个变量,描述的是变量和对应函数导数的关系
这里 画的是不同状态变量共同变化的线
对于一般形式来说:
我的理解:将表示为,是坐标变换矩阵,是对应的新的状态变量,并且是对角阵,即这一步的作用可以理解为“解耦”,解耦后和之间的关系按照上面的公式就是A的特征值(所以最后转回去的中状态变量的变化图就是和A的特征值有关系),最后得出中状态变量的变化图,再通过坐标变换矩阵转回去就是中状态变量的变化图
再举个例子,同样按照上面的计算步骤,现有状态空间方程,然后写出A矩阵,对A矩阵求特征值和特征向量,再根据特征值写出和之间的关系,由p将转回,最后得到中状态变量共同构建的关系,这里得到的是一个椭圆表示:
这个例子主要是想说明特征值为仅有一个虚部的复数时,那么它的相图是椭圆,至于椭圆的方向可以举个的例子算一个点判断
再举一个例子:
这个例子主要是想说明特征值为有实部虚部的复数,就像上面计算的,就决定了相图是循环往复转(情况和特征值为纯虚数的情况一样,而纯虚数就没有额外增益,就是在一个固定的椭圆上转),加上后就是不会转到以前的位置,会越转越大/小,方向可以举个x的例子算一个点判断
(类似经典控制理论的极点,特征值的虚部为系统带来振荡,系统稳定就要特征值的实部小于0)
四.连续系统离散化
1.主要是计算机控制没有“时间”(数字控制器),因此需要将数据采样离散化
2.这里要关注的是采样周期的选择,当选择的采样周期较小时就会产生大量的数据,当选择的采样周期较大时就会使信号混叠,最终无法还原原信号(这些不懂的可以看数字信息处理的采样),理论上采样频率至少要达到原信号最高频率的两倍,但在实际中这只是一个下限,实际要选取达到五倍-10倍的来作为采样频率。
3.对于数字控制器而言,它产生的控制量也是离散的,这里就要引入零阶保持器产生一个小段的恒定信号,如下图中原来只有黑线,但是为了使控制信号连续,就补充蓝线(零阶保持器的作用)
4.在实时控制中,一般使用时间中断来获取新信息,在中断之后会读取信息并进行计算,再输出控制量,并且从读取、计算到输出的时间必须在一个采样周期内完成(理所应当的,不然下一次采样得到数据,这边还没处理完不搞笑吗?)
对于现在的混合系统(连续离散都有)的控制器设计中,会将连续的系统转为离散系统,直接使用离散系统进行分析,根据这个设定算法再运用到混合系统当中
例如之前推导的,解为
使用到零阶保持器后,其实就是上图的补蓝线
再当前的状态作为初始状态,则
在的时间内,由于使用了零阶保持器,那在这个时间段里面输入就是常数,并且数字控制器并不关系具体的时间,只关心当前的状态,因此有
五. 系统的可控性
Co矩阵满秩则系统可控
可控性是点对点的可控呢?还是轨迹可控呢?
其实从上面的相图就可以知道,蓝线是不可能的,因为蓝线表现速度一直为正数,那就不可能会反向移动到点,黑色的线才是合理的,因此可控性是点到点的可控,轨迹不一定是预期希望的轨迹【当然这也是理论上的可控,实际情况需要具体分析】
六.稳定性(李雅普诺夫意义下的稳定、渐进稳定)
初始状态以平衡状态为球心
蓝线表示李雅普诺夫稳定,只要一开始在以为半径的圆以内,随着时间的增加,其最后的落点都会在限制在以为半径的圆内;李雅普诺夫稳定对应特征值只有非正实部的情况
棕线表示渐进稳定,只要一开始在以为半径的圆以内,随着时间的增加,其最后的落点会回到平衡状态(原点);渐进稳定对应特征值只有负实部的情况
注:经典控制理论的稳定性是渐进稳定性(收敛到0)
(后面暂时不看,先看非线性了...)
非线性理论基础
补充:
1.李雅普诺夫稳定性
李雅普诺夫关于稳定性的研究均针对平衡状态,平衡状态是对所有的t满足,当然如果是时不变的就是
李雅普诺夫第一法是求出线性化以后的常微分方程的解,从而分析系统稳定性;
李雅普诺夫第二法是不需要求解微分方程,常用于非线性、时变、MIMO系统,是一种基于广义能量函数及其随时间变化函数的特性来研究系统稳定性
2.平衡状态
一般系统状态方程为,其初始状态为,系统的状态轨线是随着时间而变化的,当且仅当时称为系统平衡点,如果不在坐标原点,可以通过非奇异线性变换使=0,因此平衡状态的稳定性问题都可以归结为原点的稳定问题
3.三种稳定
李雅普诺夫意义下的稳定(参考上面的“六.稳定性”:初始状态限制在小圈,最终状态只在大圈内)
渐进稳定(参考“六.稳定性”:初始状态限制在小圈,在大圈内移动,最终收敛到稳定状态(原点))
大范围渐进稳定:即整个状态空间任取一点,最终收敛到稳定状态
一.李雅普诺夫直接方法
用李雅普诺夫第二法来分析平衡点是否稳定
前提条件:系统状态方程为,其平衡状态满足,原点为平衡状态,在原点的邻域存在关于状态的标量函数,且具有一阶偏导
注意 稳定 和 渐进稳定 是不同的
定理一:正定,负定,则原点为渐进稳定;
定理二:正定,半负定,在时恒不为0,则原点为渐进稳定(如果只有前两个条件就是稳定)
定理三:正定,半负定,在时恒为0(导数在非平衡点外全为0),则原点为李雅普诺夫意义下的稳定
我的理解是稳定只需要有包含某些点使为0的一整条轨迹就行,而渐进稳定则要求这条轨迹必须只能在(0,0)点使为0
二.非线性系统的稳定性设计
对于上述的,显然不是负定项,是负定项,那么u的设计就是要消除非负定项
是直接针对进行消除的,而是针对设定的李雅普诺夫函数的导数来进行消除的
仿真结果通过simulink得到,可以看到包含高阶项所所需要的初始状态x输入比另外两种u的初始状态x输入高,因此需要尽量避免高阶项;而从两种情况下的的收敛速度更快,从下列求解出来的x(t)也可以很清楚的看到,-x的引入带来了指数的衰减项,而没有-x的就是线性衰减
反步法(重要!)
第一次尝试自己推导理解(不一定对)
第二次尝试自己推导理解
三.自适应控制(系统参数变化慢)
再引用前面的弹簧例题,若是要估计的
四.滑模控制( f(x)有界 )
里面的就是的边界
五.高增益控制和高频控制( f(x)有界 )
滑模控制由于会使得u一直是上下跳变的形式,这对执行器而言是非常高的要求
对于高增益的理念就是用足够大的输入去抵消不确定性,高频率就是类似滑模那种跳变,只不过将跳变的范围缩小,即往内收